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Preface 

Teleoperation is a human-in-the-loop technology for controlling robots remotely. 
The human operators are responsible for high-level planning and cognitive decision-
making, while the robot is responsible for manipulation. This allows humans to 
control the robot remotely without having to be physically present on-site. However, 
it is difficult for non-expert human operators like healthcare workers to master the 
control skills of a teleoperated robot in a short time using traditional teleoperation 
methods. With the development of motion capture and human-robot interaction tech-
nologies, human-motion-based teleoperation has become a research focus in the field. 
However, the mechanisms of human-robot motion mapping strategies are unclear, 
leading to difficulties in dual-arm motion control and full-body motion control of the 
robots with high degree-of-actuation. Additionally, the network latency and uncer-
tainty of the communication within the control loop affect the control performance 
of teleoperation systems. To address these issues, the research of the book works 
on four aspects: single-arm motion mapping, dual-arm motion mapping, full-body 
motion mapping, and reliable communication for teleoperation. Moreover, two appli-
cation cases are conducted to validate the usability of the human motion mapping 
strategies from the perspective of remote home care and remote medical assistance 
in Healthcare 4.0. The main research findings are summarized as follows: 

(1) A human-motion-based mapping framework for single-arm teleoperation is 
proposed. The framework uses the operator’s upper limb movements as input to 
control the end effector of the robotic arm. A path-constrained mapping method 
is proposed to improve the motion trajectory tracking performance of the robot 
during the teleoperation process. Based on this method, the position tracking 
deviation between the trajectory of the operator and robot is 1.05 mm at the 
sampling frequency of 7.5 Hz for simple motion trajectories, while the position 
tracking deviation is 5.10 mm for complex trajectories. 

(2) An incremental motion mapping strategy is proposed to eliminate the cumber-
some initialization and calibration process typically required in other motion 
mapping teleoperation systems. It allows flexible adjustments of the operator’s

vii



viii Preface

limb posture, improving the convenience and intuitiveness of the teleopera-
tion. Furthermore, a hybrid mapping technique of hand gesture and upper-limb 
motion (GuLiM) is presented as a novel approach in dual-arm human-robot 
motion mapping. Comparative experiments showed that the GuLiM method 
surpassed the Directly Mapping Method (DMM) at the placement precision for 
position transfer and orientation transfer, with an improvement in accuracy of 
46.77% and 69.27%, respectively. 

(3) A hand gesture trajectory recognition method is proposed using background 
feature extraction and speed analysis. 10 types of gesture commands are 
designed for controlling robot locomotion. The recognition algorithm reaches 
97.34% recognition accuracy in cross-validation. Further, a trunk motion 
mapping teleoperation strategy is introduced based on the upper body spine 
motion and lower limb motion of the operator, achieving intuitive control of 
the robot trunk with redundant degrees of freedom. Two application cases of 
elderly care and medical assistance in Healthcare 4.0 are conducted to verify 
the proposed human-motion-based teleoperation in the indoor environment and 
hospital isolation ward, respectively. 

(4) A network hardware-in-the-loop simulation framework is developed to evaluate 
the impacts of the network performance on remote robot control. The interplay 
between communication and control is investigated under conditions such as 
5G and Wi-Fi 6 local network connections, and a selection rule is given for 
choosing the wireless networks in local areas with different profiles. Moreover, 
a cloud-based teleoperation framework is introduced over ultra-long-distance 
wide-area network connections. A novel feedforward controller is designed to 
reduce tracking errors between the operator and the robot. This approach has 
successfully enabled intercontinental human-motion-based teleoperation over 
7800 km, from Sweden to China. 

Hangzhou, China 
July 2024 

Honghao Lyu 
Geng Yang



Contents 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
1.1 What is Robot Teleoperation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.1.1 Emerging Applications of Robot Teleoperation 
in Healthcare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

1.1.2 Key Technical Points for Teleoperation in Healthcare . . . . . . 3 
1.2 Cutting-Edge Research in Robot Teleoperation . . . . . . . . . . . . . . . . . 5 

1.2.1 Overview and Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
1.2.2 Human-Motion-Based Teleoperated Robot Systems . . . . . . . 10 
1.2.3 Human–Robot Motion Mapping Methods . . . . . . . . . . . . . . . 13 
1.2.4 Communication Technologies for Robot Teleoperation . . . . 15 

1.3 Open Challenges and the Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
1.3.1 Challenges for Human-Motion-Based Teleoperation . . . . . . 17 
1.3.2 Prospects of Human-Motion-Based Teleoperation . . . . . . . . 18 

1.4 Organization of This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
1.4.1 Research Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
1.4.2 Structure of this Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

2 Unimanual Human-Motion Based Robot Teleoperation . . . . . . . . . . . . 31 
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
2.2 Architecture of Human-Motion Based Teleoperation System . . . . . . 32 

2.2.1 Inertia Motion Capture and Pose Data Transformation . . . . . 32 
2.2.2 Components of Single-Arm Robot Teleoperation 

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
2.3 Single-Arm Motion Mapping Based on Trajectory Resampling . . . . 38 

2.3.1 Path-Constrained Trajectory Tracking Algorithm . . . . . . . . . 38 
2.3.2 Human–Robot Motion Tracking Performance 

Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix



x Contents

3 Bimanual Human-Motion Based Robot Teleoperation . . . . . . . . . . . . . 51 
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
3.2 Hybrid Mapping Technique of Hand Gesture and Upper-Limb 

Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 
3.2.1 Incremental Motion Mapping Strategy . . . . . . . . . . . . . . . . . . 54 
3.2.2 Dual-Arm Motion Mapping Method with Gesture 

Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
3.3 Comparison of Incremental Mapping and Direct Mapping 

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 
3.3.1 Analysis of a Grasp Task Using Incremental Motion 

Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 
3.3.2 Definition of the Evaluation Metrics and Experimental 

Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 
3.3.3 Placement Accuracy Evaluation for Grasp Task . . . . . . . . . . . 65 

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 

4 Whole-Body Human-Motion Based Robot Teleoperation . . . . . . . . . . . 69 
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 
4.2 Human-Motion Based Teleoperation of Robot Mobile Chassis . . . . 70 

4.2.1 Dynamic Gesture Trajectory Recognition . . . . . . . . . . . . . . . . 71 
4.2.2 Hand Gesture Recognition for Robot Mobile Chassis 

Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 
4.3 Human-Motion Based Teleoperation of Robot Articulated 

Torso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 
4.3.1 A Dual-Arm Mobile Robot Prototype with Articulated 

Torso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 
4.3.2 Motion Mapping Strategy for Robot Articulated Torso . . . . 88 
4.3.3 Validation of Human-Motion Based Robot Torso 

Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

5 Communication in Human-Motion Based Robot Teleoperation . . . . . 95 
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 
5.2 Robot Teleoperation via Local Wireless Networks . . . . . . . . . . . . . . . 96 

5.2.1 Performance Evaluation Under Local Area Network 
Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 

5.2.2 Impacts of Local Wireless Networks to Teleoperation . . . . . 103 
5.2.3 Communication and Control Co-design 

for Teleoperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 
5.3 Robot Teleoperation via Wide-Area Wired Networks . . . . . . . . . . . . 111 

5.3.1 The Architecture of the Intercontinental 
Communication Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 

5.3.2 Feedforward Control Framework and the Comparative 
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



Contents xi

5.3.3 Verification of an Intercontinental Teleoperation 
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 

6 Healthcare Applications of Human-Motion Based Robot 
Teleoperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 
6.1 Teleoperation Use Case for Remote Homecare . . . . . . . . . . . . . . . . . . 125 

6.1.1 System Architecture of a Homecare Robot Prototype . . . . . . 126 
6.1.2 Application for Remote Dementia Care in Home 

Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 
6.2 Teleoperation Use Case for Telemedicine in COVID-19 . . . . . . . . . . 129 

6.2.1 A Medical Assistive Robot Prototype Used 
in Isolation Ward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 

6.2.2 Clinical Trials of Robot Teleoperation in Isolation 
Ward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 

7 Conclusion and Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 
7.1 Research Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 
7.2 Technical Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 
7.3 Look into the Future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



List of Figures 

Fig. 1.1 The architecture of teleoperation systems driven 
by the tactile internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

Fig. 1.2 Tracing the applications of traditional teleoperated robotic 
systems. a A teleoperation system for nuclear waste 
handling [70]. b A teleoperation system for deep space 
exploration [71]. c A teleoperation system carried on board 
the space shuttle [72] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

Fig. 1.3 The application of teleoperated robotic systems 
in the healthcare field. a The first transoceanic remote 
surgery demonstration [75]. b The Da Vinci robot surgical 
system [76] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

Fig. 1.4 Research progress of teleoperated robot systems in China. 
a The satellite in-orbit autonomous maintenance 
teleoperation system [81]. b The Chang’e-5 lander [82] . . . . . . . 7 

Fig. 1.5 Representative desktop force feedback teleoperation input 
devices. a The heterogeneous 6-degree-of-freedom force 
feedback hand controller [84]. b The geomagic touch 
series of serial force feedback haptic devices [87]. c The 
omega series of parallel force feedback haptic devices 
by force dimension [87] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

Fig. 1.6 Representative exoskeleton teleoperation input devices. 
a 7-DoF exoskeleton [90]. b An exoskeleton device 
capable of capturing coupled movements of the upper 
limbs and wrists [91]. c Remote exoskeleton device 
for operating Toyota’s T-HR3 robot [92] . . . . . . . . . . . . . . . . . . . . 9 

Fig. 1.7 Representative wearable teleoperation input devices. 
a A wearable electromyographic (EMG) armband 
[100]. b Wearable inertial motion capture devices [101]. 
c Wearable optical marker-based motion capture devices 
[102] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

xiii



xiv List of Figures

Fig. 1.8 DexPilot teleoperation system developed by CMU. 
a DexPilot system [53]. b DexPilot teleoperated grasping 
demonstration [53] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

Fig. 1.9 The exoskeleton teleoperation system for HERMES 
robot from MIT. a HERMES Robot and its teleoperation 
device [106]. b Model diagram of the balance feedback 
exoskeleton device [107] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

Fig. 1.10 Teleoperation system based on inertial motion 
capture from UPC. a Whole-body skeletal modeling 
and motion pose mapping strategy [109]. b Teleoperation 
demonstration [109] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

Fig. 1.11 Teleoperation of the Baxter robot based on joint-space 
mapping [119] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

Fig. 1.12 Teleoperation of HRP-2 robot in Japan from Germany [131] . . . 16 
Fig. 1.13 The organizational structure of this book . . . . . . . . . . . . . . . . . . . 22 
Fig. 2.1 Detailed control block diagram of the proposed telerobotic 

system, reprinted from Ref. [4], CC BY 4.0 . . . . . . . . . . . . . . . . . 33 
Fig. 2.2 The skeleton model of the upper limb and the IMUs 

on the body, reprinted from Ref. [4], CC BY 4.0 . . . . . . . . . . . . . 34 
Fig. 2.3 Two types of motion planning methods in ROS moveit . . . . . . . . 37 
Fig. 2.4 Motion mapping execution process based on trajectory 

resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
Fig. 2.5 The trajectory tracking performance of four 

simple trajectories at Fre = 7.5Hz, reprinted from Ref. 
[4], CC BY 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

Fig. 2.6 Raw and DTW aligned position data of the trajectory “—”. 
a X-axis position. b Y-axis position. c Z-axis position . . . . . . . . . 42 

Fig. 2.7 Raw and DTW aligned position data of the trajectory “|”. 
a X-axis position. b Y-axis position. c Z-axis position . . . . . . . . . 42 

Fig. 2.8 Raw and DTW Aligned position data of the trajectory “�”. 
a X-axis position data. b Y-axis position data. c Z-axis 
position data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 

Fig. 2.9 Raw and DTW aligned position data of the trajectory “�”. 
a X-axis position data. b Y-axis position data. c Z-axis 
position data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

Fig. 2.10 Statistical analysis of tracking performance for simple 
trajectories, reprinted from Ref. [4], CC BY 4.0. a Position 
tracking accuracy. b Posture tracking accuracy . . . . . . . . . . . . . . 46 

Fig. 2.11 Tracking performance of three complex trajectories 
at Fre = 7.5Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 

Fig. 2.12 Statistical analysis of tracking performance for complex 
trajectories. a Position tracking accuracy. b Orientation 
tracking accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



List of Figures xv

Fig. 3.1 Teleoperation architecture based on hand gesture 
and upper-limb motion, reprinted from Lyu et al. [1], 
Copyright (2025), with permission from IEEE . . . . . . . . . . . . . . . 53 

Fig. 3.2 Hand gesture rule definition for hybrid GuLiM mapping 
technique, reprinted from Lyu et al. [1], Copyright (2025), 
with permission from IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

Fig. 3.3 Human–robot coordinate transformation in Cartesian 
space, reprinted from Lyu et al. [1], Copyright (2025), 
with permission from IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

Fig. 3.4 Schematic diagram of incremental pose mapping 
strategy, reprinted from Lyu et al. [1], Copyright (2025), 
with permission from IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

Fig. 3.5 The process of the GuLiM human–robot motion mapping 
technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 

Fig. 3.6 Dual-arm human–robot coordinate transformation 
in Cartesian space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

Fig. 3.7 Frame flowchart of grasping using GuLiM method, 
reprinted from Lyu et al. [1], Copyright (2025), 
with permission from IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

Fig. 3.8 The motion data curves in the GuLiM process, reprinted 
from Lyu et al. [1], Copyright (2025), with permission 
from IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

Fig. 3.9 Experimental setup and illustration of accuracy evaluation, 
reprinted from Lyu et al. [1], Copyright (2025), 
with permission from IEEE. a Pick-and-place experiment 
setup. b Position accuracy evaluation setup. c Orientation 
setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

Fig. 3.10 Placement accuracy and time consumption for different 
operators. a Results of position accuracy evaluation. 
b Results of orientation accuracy evaluation . . . . . . . . . . . . . . . . . 66 

Fig. 3.11 Comparison of the GuLiM and DMM in task accuracy 
and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

Fig. 4.1 Block diagram of the HRI system based dynamic gesture 
recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

Fig. 4.2 Structure and hardware composition of the wearable 
wrist camera, reprinted from Ref. [6], CC BY 4.0. a The 
hardware composition of the wearable wrist camera. 
b Design of wearable wrist camera prototype . . . . . . . . . . . . . . . . 72 

Fig. 4.3 Process of dynamic gesture trajectory recognition 
algorithm, reprinted from Ref. [6], CC BY 4.0 . . . . . . . . . . . . . . . 74 

Fig. 4.4 Algorithmic processing flow of hand region segmentation, 
reprinted from Ref. [6], CC BY 4.0. a Original image 
and element composition. b Pixel cropped image. c L * a * 
b* color space image. d Superpixel image. e Initial seed 
pixels. f Hand area segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 75



xvi List of Figures

Fig. 4.5 Calculation of the background velocity of the key 
points, reprinted from Ref. [6], CC BY 4.0. a Keypoints 
in the previous frame. b Keypoints in the current frame. 
c Keypoints matching and velocity vector calculation. 
d Calculation of the effective background speed 
for the current frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 

Fig. 4.6 Schematic diagram of the continuous gesture trajectory 
segmentation, reprinted from Ref. [6], CC BY 4.0 . . . . . . . . . . . . 79 

Fig. 4.7 Ten predefined gesture commands for mobile robot 
control, reprinted from Ref. [6], CC BY 4.0 . . . . . . . . . . . . . . . . . 80 

Fig. 4.8 Velocity profiles for ten predefined gesture commands, 
reprinted from Ref. [6], CC BY 4.0 . . . . . . . . . . . . . . . . . . . . . . . . 82 

Fig. 4.9 Recognition confusion matrixes of the ten gestures, 
reprinted from Ref. [6], CC BY 4.0. a Confusion matrix 
in sitting state. b Confusion matrix in standing state . . . . . . . . . . 85 

Fig. 4.10 Accuracy, recall and F1-score of gesture recognition, 
reprinted from Ref. [6], CC BY 4.0. a Recognition results 
in sitting state. b Recognition results in standing state . . . . . . . . . 85 

Fig. 4.11 Dynamic gesture recognition for mobile care robot 
control, reprinted from Ref. [6], CC BY 4.0. a Validation 
of the riding operation mode. b Validation of teleoperation 
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 

Fig. 4.12 The components overview of the anthropomorphic 
dual-arm robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

Fig. 4.13 Torso DoFs of the anthropomorphic robot compared 
to the operator. a Human skeletal nodes. b Human-robot 
torso motion mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

Fig. 4.14 Motion mapping strategy for 3-DoF anthropomorphic 
robot torso. a Lifting motion mapping. b Bending motion 
mapping. c Rotating motion mapping . . . . . . . . . . . . . . . . . . . . . . 90 

Fig. 4.15 Practical teleoperation of a 3-DoF anthropomorphic robot 
torso. a Lifting motion mapping. b Bending motion 
mapping. c Rotating motion mapping . . . . . . . . . . . . . . . . . . . . . . 91 

Fig. 5.1 Diagram of the network hardware-in-the-loop framework, 
reprinted from Ref. [2], CC BY 4.0 . . . . . . . . . . . . . . . . . . . . . . . . 97 

Fig. 5.2 Network latency measurement using the ULT timestamp 
device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 

Fig. 5.3 Network configuration and data flow of the teleoperation 
system, reprinted from Ref. [2], CC BY 4.0 . . . . . . . . . . . . . . . . . 99 

Fig. 5.4 The network profile analysis of Wi-Fi 6 and 5G network 
conditions, reprinted from Ref. [2], CC BY 4.0 . . . . . . . . . . . . . . 103 

Fig. 5.5 The robot motion performance is affected by sudden 
changes in network conditions, reprinted from Ref. [2], 
CC BY 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



List of Figures xvii

Fig. 5.6 Overview comparison of control performance using 
the raw data, reprinted from Ref. [2], CC BY 4.0. a Motion 
delay. b Joint position peak amplitude error . . . . . . . . . . . . . . . . . 105 

Fig. 5.7 Statistical analysis of robot control using the raw data, 
reprinted from Ref. [2], CC BY 4.0. a PDF curves 
of control performance under Wi-Fi 6@short network 
condition. b PDF curves of control performance 
under Wi-Fi 6@medium network condition. c PDF curves 
of control performance under Wi-Fi 6@long network 
condition. d PDF curves of control performance under 5G 
network condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 

Fig. 5.8 Overview comparison of control performance 
after deploying a filter, reprinted from Ref. [2], CC BY 
4.0. a Motion delay. b Joint position peak amplitude error . . . . . 108 

Fig. 5.9 Statistical analysis of control after deploying a filter 
on robot controller, reprinted from Ref. [2], CC BY 4.0. 
a PDF curves of control performance under Wi-Fi 6@short 
network condition. b PDF curves of control performance 
under Wi-Fi 6@medium network condition. c PDF curves 
of control performance under Wi-Fi 6@long network 
condition. d PDF curves of control performance under 5G 
network condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 

Fig. 5.10 CCDF curves of control metrics without filtering, reprinted 
from Ref. [2], CC BY 4.0. a CCDF curves of motion delay. 
b CCDF curves of joint position peak error . . . . . . . . . . . . . . . . . 110 

Fig. 5.11 CCDF curves of control metrics with filtering, reprinted 
from Ref. [2], CC BY 4.0. a CCDF curves of motion delay. 
b CCDF curves of joint position peak error . . . . . . . . . . . . . . . . . 110 

Fig. 5.12 WAN teleoperation framework based on google cloud 
platform, reprinted from Lyu et al. [1], Copyright (2025), 
with permission from IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 

Fig. 5.13 Simulated verification of WAN teleoperation on dual-arm 
YuMi robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 

Fig. 5.14 Real-life verification of WAN teleoperation 
on the anthropomorphic robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 

Fig. 5.15 Experiment setup and comparison for intercontinental 
robot teleoperation, reprinted from Lyu et al. [1], Copyright 
(2025), with permission from IEEE . . . . . . . . . . . . . . . . . . . . . . . . 115 

Fig. 5.16 Benchmark performance under local Ethernet connection 
conditions, reprinted from Lyu et al. [1], Copyright (2025), 
with permission from IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 

Fig. 5.17 Teleoperation performance under intercontinental WAN 
conditions, reprinted from Lyu et al. [1], Copyright (2025), 
with permission from IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



xviii List of Figures

Fig. 5.18 Feedforward controller for WAN teleoperation with high 
latency, reprinted from Lyu et al. [1], Copyright (2025), 
with permission from IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 

Fig. 5.19 Simulation comparison for feedforward control framework. 
a Initial system simulation. b Simulation with feedforward 
controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 

Fig. 5.20 Real-life performance of intercontinental teleoperation 
with feedforward, reprinted from Lyu et al. [1], Copyright 
(2025), with permission from IEEE . . . . . . . . . . . . . . . . . . . . . . . . 119 

Fig. 5.21 Intercontinental teleoperation system setup 
and the demonstration, reprinted from Lyu et al. 
[1], Copyright (2025), with permission from IEEE . . . . . . . . . . . 120 

Fig. 5.22 Intercontinental teleoperation for bimanual coordinated 
insertion task, reprinted from Lyu et al. [1], Copyright 
(2025), with permission from IEEE . . . . . . . . . . . . . . . . . . . . . . . . 121 

Fig. 5.23 Some use cases of the intercontinental teleoperation. 
a Teleoperated wooden block organization. b Teleoperated 
fruit handling. c Teleoperated auscultation verification . . . . . . . . 121 

Fig. 5.24 Intercontinental sensing feedback and safety interaction 
for teleoperation, reprinted from Lyu et al. [1], Copyright 
(2025), with permission from IEEE . . . . . . . . . . . . . . . . . . . . . . . . 122 

Fig. 6.1 Architecture of the telerobotic system for remote 
homecare, reprinted from Ref. [1], CC BY 4.0 . . . . . . . . . . . . . . . 126 

Fig. 6.2 Prototype design of the homecare robot, reprinted 
from Ref. [4], CC BY 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 

Fig. 6.3 Demonstration of picking up a medicine bottle remotely, 
reprinted from Ref. [1], CC BY 4.0 . . . . . . . . . . . . . . . . . . . . . . . . 128 

Fig. 6.4 Delivering items remotely for the elderly by robot 
teleoperation, reprinted from Ref. [1], CC BY 4.0 . . . . . . . . . . . . 129 

Fig. 6.5 Teleoperated robot in isolation ward for COVID-19 
prevention and control, reprinted from Ref. [7], CC BY 4.0 . . . . 130 

Fig. 6.6 Teleoperated robot prototype for medical assistance 
in isolation ward, reprinted from Ref. [7], CC BY 4.0 . . . . . . . . . 131 

Fig. 6.7 Remote medicine delivery using the teleoperated robot . . . . . . . . 132 
Fig. 6.8 Clinical applications of the robot teleoperation in FAHZU 

for COVID-19, reprinted from Ref. [7], CC BY 4.0. 
a Medicine delivery. b Remote auscultation. c Remote 
operation of the medical instruments. d Remote daily 
consultation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



List of Tables 

Table 1.1 Summary of technical characteristics of teleoperation 
input devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

Table 1.2 Summary of classification and technical characteristics 
of human–robot pose mapping methods . . . . . . . . . . . . . . . . . . . . 13 

Table 1.3 Summary of research on communication systems for robot 
control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

Table 2.1 Technical parameter table of wearable inertia motion 
capture device PN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

Table 2.2 Technical parameters of ABB YuMi robot . . . . . . . . . . . . . . . . . . 36 
Table 2.3 DTW distances for human–robot motion tracking 

for simple trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
Table 2.4 DTW distances for human–robot motion tracking 

for complex trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
Table 3.1 Standard DH model parameters for single arm of YuMi 

robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 
Table 4.1 Segmentation accuracies under different thresholds Vt . . . . . . . . 78 
Table 4.2 Accuracy of gesture recognition under three different 

cross-validation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 
Table 5.1 Experiment setup under different network conditions . . . . . . . . . 101 
Table 5.2 Network profile selection strategy for different control 

scenarios, reprinted from Ref. [2], CC BY 4.0 . . . . . . . . . . . . . . . 111

xix



Chapter 1 
Introduction 

Abstract This chapter begins by addressing the question “What is Robot Teleop-
eration”. It introduces various application scenarios of robot teleoperation, such as 
remote homecare and remote medical assistance, citing relevant research findings. 
The chapter then discusses key technical points for teleoperation in healthcare, high-
lighting the limitations of traditional single-arm industrial robots, which are unsuit-
able for complex remote nursing tasks. In contrast, dual-arm collaborative robots 
offer greater flexibility and coordination, making them more suitable for nursing 
assistance that requires two-handed operations. The chapter also emphasizes the 
role of human motion capture technology in enhancing remote control intuitive-
ness and reducing training costs. Despite significant advancements, many technical 
challenges remain, particularly in terms of interaction intuitiveness and network 
performance. The chapter further reviews the evolution and categorization of tele-
operation systems, covering the key concepts of human-motion-based teleoperation, 
human–robot motion mapping, and communication technologies. It discusses open 
challenges in teleoperation systems, such as accurately transferring human poses 
to robots, achieving smooth movement paths, and ensuring dual-arm and whole-
body coordination. Finally, the chapter explores the prospects for next-generation 
teleoperated assistive robots, highlighting the need for improved strategies in limb 
pose mapping, dual-arm operation, and control-network co-design, particularly for 
unstructured caregiving tasks. The chapter concludes with an overview of the book’s 
structure. 

Keywords Teleoperation · Robot teleoperation applications · Healthcare 
robotics · Teleoperation background · Human-motion-based control 

1.1 What is Robot Teleoperation? 

Robot teleoperation is a type of remote robot control technology with human oper-
ators in the loop. The human operator is responsible for high-level planning and 
cognitive decision-making, while the robot itself executes the corresponding control
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commands [1, 2]. Teleoperation enables robots to harness human high-level decision-
making abilities to perform various tasks in complex and dynamic environments, 
thereby expanding the operational capabilities of robots [3, 4]. At the same time, it 
spares human users from having to be directly present in the robot’s operational envi-
ronment, allowing them to remotely control the robot from a local setting, thereby 
safeguarding human safety. For example, in extremely hazardous environments such 
as deep-sea exploration [5, 6], deep space exploration [7, 8], nuclear power plant 
maintenance [9, 10], and chemical waste disposal [11], teleoperation robots have 
significant application value [12, 13]. The development of intelligent perception tech-
nology [14], intelligent control technology [15], network transmission technology 
[16, 17], and the emergence of collaborative robots have further expanded the appli-
cation scenarios of teleoperation technology. This has enabled teleoperation robots 
to have new applications in fields such as remote homecare and remote medical 
assistance [18–23]. 

1.1.1 Emerging Applications of Robot Teleoperation 
in Healthcare 

Remote homecare: With the continuous increase in the global proportion of elderly 
populations, population aging has become a common challenge faced by countries 
worldwide [24, 25]. It is projected that by 2050, the proportion of people aged 60 and 
above in the world’s total population will reach 21%, with the elderly population in the 
European Union and the United States reaching 28 and 22% respectively. As of 2015, 
China’s population aged 60 and above has reached 220 million, accounting for 16% 
of China’s total population. By 2050, this number is expected to reach 500 million, 
accounting for one-third of China’s total population [26]. With the increasing elderly 
population, the societal burden of elderly care is growing, inevitably increasing the 
demand for caregivers. However, the current number of caregivers is limited and far 
from sufficient to meet the needs of an aging society [27, 28]. Teleoperation robots 
can remotely provide professional technical support from caregivers to complex, 
unstructured home environments with multiple user terminals [27, 29, 30], alleviating 
the shortage of homecare personnel. This represents a crucial solution to the challenge 
of elderly care [31, 32]. 

Remote medical assistance: Public health emergencies such as the COVID-
19 pandemic have triggered major crises in global life, health security, and socio-
economic order [33]. During previous major outbreaks, a significant number of front-
line healthcare workers were infected [34, 35]: During the SARS outbreak in 2003, 
1002 healthcare workers in mainland China were infected, accounting for 18.8% 
of all cases [36]; in the Middle East Respiratory Syndrome (MERS) outbreak, 106 
healthcare workers were infected, accounting for 13.5% of all cases [37]. Teleop-
eration robots, as a form of remote human–robot interaction system, can act as a 
‘second body’ for healthcare workers. They can assist or replace healthcare workers
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in entering isolation wards to perform diagnosis and care operations [36, 38–40]. This 
reduces the number of contacts between healthcare workers and patients, lowers the 
risk of nosocomial infections, effectively protects the lives and health of healthcare 
workers [41–44], and alleviates the issue of nosocomial infections among frontline 
healthcare workers. 

1.1.2 Key Technical Points for Teleoperation in Healthcare 

Traditional industrial robots are typically single-armed, with operational capabil-
ities restricted to simple tasks, lacking intrinsic intelligence. They are ill-suited 
for performing complex remote nursing assistance operations effectively. Dual-arm 
collaborative robots exhibit higher coordination and flexibility, offering significant 
advantages in tasks requiring two-handed participation [45]. They can play a more 
substantial role in nursing assistance tasks characterized by high dynamics and strong 
environmental interactions, executing teleoperation tasks more flexibly and accu-
rately conveying the intentions of caregivers [46]. On the other hand, human motion 
capture technology can intuitively interpret operators’ motion intentions without 
additional training costs, enabling remote intuitive teleoperation with humans in the 
loop [47]. Despite years of research by industry researchers on teleoperation tech-
nology, there are still many technical challenges in terms of interaction intuitiveness, 
convenience, and other aspects. The impact of teleoperation loop network perfor-
mance on control performance has not been fully understood. Improving existing tele-
operation methods or proposing more sophisticated interactive methods has always 
been a key focus in the development of robot teleoperation systems [48]. Currently, 
for the implementation of robot teleoperation nursing assistance applications, the 
following urgent technical requirements are identified: 

The intuitiveness of remote control is crucial in the interaction process of robot 
teleoperation. Convenience of operation and intuitive control are indispensable 
factors. Since the operators of nursing assistant robots are professional medical 
personnel, their time is limited. Traditional teleoperation input devices have cumber-
some interfaces and high training costs, which cannot meet the convenience require-
ments of medical staff for operations [49]. Furthermore, medical personnel perform 
complex professional actions, and traditional interaction input methods struggle to 
encode the true operational intentions of medical staff, thus hindering effective coor-
dination between robots and operators [50]. Therefore, it is imperative to conduct 
in-depth research on human–robot pose mapping methods based on operator limb 
motion data to enhance the intuitiveness of remote control of robots by medical 
personnel. 

The convenience of dual-arm operation. Currently, nursing assistant robots 
in unstructured operating environments such as isolation wards, large hospitals, 
and home settings typically have a single-arm structure, which cannot meet the 
operational requirements of complex diagnostic and therapeutic assistance tasks 
[51]. Dual-arm manipulation allows for more flexible execution of complex tasks.
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However, in practical operations, frequent switching between control targets and 
coordinating the left and right arms to complete tasks poses challenges. Traditional 
dual-arm teleoperation systems designed based on conventional input devices are 
costly, with complex interfaces that do not meet the intuitive and convenient control 
requirements for dual-arm teleoperation [52]. Therefore, it is essential to conduct 
in-depth research on robot dual-arm pose mapping teleoperation control methods to 
meet the complex teleoperation task requirements in nursing assistant scenarios. 

The coordination of full-body movements. In recent years, to meet the task 
demands of complex, unstructured operational scenarios such as homecare and 
medical assistance, robot designs have evolved beyond arm actuators. They typically 
include mobile bases and redundant degrees of freedom mechanisms like humanoid 
torsos to enhance adaptability to complex operational tasks [53, 54]. Traditional 
teleoperation methods designed for single-arm robots are inadequate for coordi-
nating such redundant degrees of freedom mechanisms [55, 56]. Therefore, there 
is an urgent need to research full-body coordinated teleoperation methods based 
on operator limb motion data. This will enable full-body coordinated teleoperation 
of humanoid robots with redundant degrees of freedom in high-dynamic, intense 
environmental interaction scenarios. 

The reliability of network design. Communication networks is an indispensable 
component of teleoperation systems. Local wireless networks and wide-area wired 
networks enhance the deployment flexibility of robotic system, allowing operators 
to remotely control robots over different spatial distances [57]. However, compared 
to local wired networks, wireless and wide-area networks introduce additional trans-
mission delays and communication unreliability, which significantly impact latency-
sensitive teleoperation control systems [58–60]. Therefore, there is an urgent need 
for systematic research on the impact of network communication performance on 
robot teleoperation control performance [61]. It is crucial to further analyze the 
correlation between network performance and control performance in teleoperation 
systems, aiming to achieve coordinated design of network and control systems for 
pose mapping teleoperation systems. 

Due to complex environments and diverse tasks, teleoperated nursing assistant 
robots still face many scientific challenges and technological bottlenecks in intuitive 
control, dual-arm mapping, collaborative operations, and network communication. 
Responding to these scientific challenges and the technological requirements in prac-
tical applications, this study focuses on key technologies for pose mapping teleop-
eration and intelligent interaction between humans and robots. The study explores 
single-arm and dual-arm pose mapping methods based on operator limb motion data 
input, as well as pose mapping teleoperation control methods for robot mobile bases 
and humanoid torsos with redundant degrees of freedom mechanisms. It investigates 
the impact mechanism of network performance on control performance in teleoper-
ation control systems to enhance the intuitiveness, collaboration, and reliability of 
robot teleoperation technology. Furthermore, the study aims to apply these advance-
ments to new application scenarios of teleoperation technology in remote home-
care and remote medical assistance under the concept of Health 4.0. This research
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contributes to advancing the application of nursing assistant robots in China, accel-
erating the rapid development of the nursing assistant robot industry by providing 
crucial technological support. 

1.2 Cutting-Edge Research in Robot Teleoperation 

1.2.1 Overview and Classification 

Teleoperation systems primarily refer to robotic systems where operators use master 
input devices to control slave robot for exploration, accomplishing tasks and so 
on. Communication between the master device and the slave robot is facilitated 
through network connections [2], and it is significant to realize high reliability and 
low latency in teleoperation systems. About remote human–robot interaction with 
next-generation network technologies, Professor Gerhard P. Fettweis from Dresden 
University of Technology has proposed the concept architecture of the Tactile Internet 
[62–64]. The IEEE 1918.1 Tactile Internet working group [65] has unified the defi-
nition of next-generation teleoperation systems into three parts: the master domain, 
network domain, and slave domain [66], as shown in Fig. 1.1. The master domain 
primarily includes the operator and the operating system interface. The slave domain 
consists of remote operating devices directly controlled by various command signals 
from the master domain, enabling interaction with various objects in the remote envi-
ronment and providing feedback information back to the master domain. The network 
domain serves as a medium for bidirectional control communication between the 
master domain and the slave domain. Under the drive of technologies such as 5G 
or Ultra Reliable Low Latency Communications (URLLC), it dynamically couples 
operators to remote environments.

Traditional teleoperation applications are mostly oriented towards space explo-
ration [67], deep-sea exploration [68], and nuclear power plant maintenance [69]. The 
earliest teleoperation systems can be traced back to 1954, when C. Goertz and others 
at the Argonne National Laboratory (ANL) developed two symmetrical master–slave 
mechanical arms for handling nuclear waste tasks, with the slave arm replicating the 
movements of the master arm through mechanical structure [70]. Additionally, in 
the 1980s, NASA’s Jet Propulsion Laboratory (JPL) developed a dual-arm oper-
ating system for simulating teleoperation in deep space [71]. In 1993, the German 
Aerospace Center (DLR) conducted the first actual remote test in space with the 
ROTEX robot teleoperation system mounted on the Space Shuttle Columbia [72] 
(Fig. 1.2).

As technology advances, teleoperation techniques have begun to be applied in the 
fields of remote diagnosis, remote surgical assistance, and other aspects of healthcare 
[73, 74]. As shown in Fig. 1.3, in 2001, the teleoperated robotic system ZEUS devel-
oped by Computer Motion Inc. enabled the first demonstration of remote-assisted 
gallbladder removal surgery conducted from France [75]. Additionally, in 2012,
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Fig. 1.1 The architecture of teleoperation systems driven by the tactile internet

(a) A teleoperation system for 

nuclear waste handling [70] 

(b) A teleoperation system for 

deep space exploration [71] 

(c) A teleoperation system 

carried on board the space 

shuttle [72] 

Fig. 1.2 Tracing the applications of traditional teleoperated robotic systems. a A teleoperation 
system for nuclear waste handling [70]. b A teleoperation system for deep space exploration [71]. 
c A teleoperation system carried on board the space shuttle [72]

supported by teleoperation technology, the DaVinci surgical robot system developed 
by Intuitive Surgical Inc. successfully completed a minimally invasive heart surgery 
[76].

Tsinghua University [77, 78], Southeast University [79], Shanghai Jiao Tong 
University [80], and Harbin Institute of Technology [81] have all conducted research 
on key technologies in the field of teleoperated robotics. As shown in Fig. 1.4a, Harbin 
Institute of Technology has developed a satellite on-orbit autonomous maintenance 
teleoperation system. This system belongs to a typical bilateral teleoperation system, 
utilizing force feedback gloves and a spatial mouse as interaction devices at the near 
end. It has also established a three-dimensional virtual predictive environment for 
satellite maintenance teleoperation experiments [81]. The successful implementation
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(a) The first transoceanic remote surgery 

demonstration [75] 
(b) The Da Vinci Robot Surgical System [76] 

Fig. 1.3 The application of teleoperated robotic systems in the healthcare field. a The first 
transoceanic remote surgery demonstration [75]. b The Da Vinci robot surgical system [76]

of China’s Chang’e-5 lunar lander’s lunar soil sampling mechanical arm in the third 
phase of the lunar exploration program, as well as the mechanical arm on the “Yutu” 
lunar rover in the second phase, as depicted in Fig. 1.4b, signifies the increasing 
strength of China’s space technology and marks a milestone in its technological 
development [82]. 

Most of the teleoperation systems mentioned above are customized devices 
tailored for specific special applications or tasks, lacking generality. With the devel-
opment of control and communication technologies, many universal teleoperation 
control input devices are emerging for robot teleoperation systems. According to 
the structural and functional characteristics of input devices, this book categorizes

(a) The satellite in-orbit autonomous 

maintenance teleoperation system [81] 
(b) The Chang’e-5 lander [82]  

Fig. 1.4 Research progress of teleoperated robot systems in China. a The satellite in-orbit 
autonomous maintenance teleoperation system [81]. b The Chang’e-5 lander [82] 
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teleoperation systems into three types: desktop force control device input teleopera-
tion, exoskeleton device input teleoperation, and wearable device input teleoperation. 
Desktop force feedback devices are mainly used to capture the operator’s hand input 
motions for teleoperating the end effector of robotic arms. Exoskeleton and wearable 
devices can capture the overall movements of the operator’s limbs or even move-
ments of other body parts, enabling more flexible control actions of the remote robotic 
system through human–robot motion mapping. 

Desktop force control teleoperation input devices are lightweight and easy-to-
install universal human–robot interaction devices. They are primarily operated by 
the operator gripping them with their hands to provide teleoperation inputs, also 
known as hand controllers [83]. The hand controller, while capturing the operator’s 
end-effector motion information, also provides feedback forces from the slave side. 
Structurally, it can be categorized into series and parallel types. As shown in Fig. 1.5a, 
the team led by Song Aiguo from Southeast University developed a heterogeneous 
6-degree-of-freedom force feedback hand controller for teleoperation experiments 
inside a spacecraft. This controller increases the workspace and feedback forces, 
thereby enhancing control precision [84, 85]. As shown in Fig. 1.5b and c, currently, 
one of the representative devices is the series of serial hand controllers from the 
American company 3D Systems, known as Geomagic Touch [86]. As well as the 
parallel force feedback hand controllers from the Swiss company Force Dimension, 
known as the Delta/Omega [87]. 

Exoskeleton teleoperation input devices are a kind of master input devices for 
remote operation tasks that follow the movements of the operator’s limbs, mostly 
consisting of rigid serial link mechanisms [88, 89]. Based on the configuration 
differences with the controlled robot at the slave end, they can be classified into 
homogenous and heterogeneous exoskeletons. A seven-degree-of-freedom upper 
limb exoskeleton developed by the University of Washington features joints and 
linkages adapted to human body, but suffers from bulkiness, coupled joint positions

(a) The heterogeneous 6-

degree-of-freedom force 

feedback hand controller [84] 

(b) The Geomagic Touch 

series of serial force feedback 

haptic devices [87] 

(c) The Omega series of parallel 

force feedback haptic devices 

by Force Dimension [87] 

Fig. 1.5 Representative desktop force feedback teleoperation input devices. a The heterogeneous 
6-degree-of-freedom force feedback hand controller [84]. b The geomagic touch series of serial 
force feedback haptic devices [87]. c The omega series of parallel force feedback haptic devices by 
force dimension [87] 
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(a) 7-DoF exoskeleton [90] 

(b) An exoskeleton device 

capable of capturing coupled 

movements of the upper 

limbs and wrists [91] 

(c) Remote exoskeleton device 

for operating Toyota’s T-HR3 

robot [92] 

Fig. 1.6 Representative exoskeleton teleoperation input devices. a 7-DoF exoskeleton [90]. b An 
exoskeleton device capable of capturing coupled movements of the upper limbs and wrists [91]. 
c Remote exoskeleton device for operating Toyota’s T-HR3 robot [92] 

and torques, and a complex drive system, leading to lower motion control precision, 
as depicted in Fig. 1.6a [90]. An exoskeleton developed by the University of Pisa in 
Italy for centaur robot teleoperation [91] flexibly captures upper limb and wrist move-
ments of the operator, shown in Fig. 1.6b, yet it is bulky (weighing 2.8 kg), difficult 
to wear, and lacks naturalness in human–robot interaction. A more mature product 
currently is Toyota’s T-HR3 robot’s master control exoskeleton [92], as shown in 
Fig. 1.6c, enabling operators to wear the exoskeleton and control the movement of 
the humanoid robot. 

Wearable teleoperation input devices refer to various devices worn on the human 
body to capture actions of the operator at the master end for controlling robots [93]. 
Current technological implementations mainly include electromyographic (EMG) 
signal acquisition [94, 95], inertial motion capture [96, 97], and wearable optical 
marker motion capture [98, 99]. As shown in Fig. 1.7a, a wearable EMG armband 
developed by Yang’s team at Zhejiang University captures muscle signals for tele-
operating a dexterous robotic hand [100]. In Fig. 1.7b, the University of Freiburg 
in Germany uses the wearable inertial motion capture device MVN to help the 
humanoid robot Nao mimic full-body actions of human [101]. In addition to these 
new interaction devices, wearable optical marker motion capture devices, as depicted 
in Fig. 1.7c, enable precise tracking of human movements. Researchers at École 
Polytechnique Fédérale de Lausanne in Switzerland used this technology to achieve 
intuitive teleoperation of a quadcopter drone [102].

Summarizing the technical characteristics of the aforementioned three types of 
teleoperation input devices, as shown in Table 1.1, it can be seen from the review of 
the teleoperation robot systems that traditional teleoperation robot systems mainly 
use desktop force control input devices at the master end, such as multi-degree-of-
freedom hand controllers with customized mechanical structures. With the innovation 
in sensor technology, various new human–robot interaction devices have emerged in 
recent years, significantly enhancing the ability to intuitively capture the operator’s
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(a) A wearable 

electromyographic (EMG) 

armband [100] 

(b) Wearable inertial motion capture 

devices [101] 

(c) Wearable optical 

marker-based motion 

capture devices [102] 

Fig. 1.7 Representative wearable teleoperation input devices. a A wearable electromyographic 
(EMG) armband [100]. b Wearable inertial motion capture devices [101]. c Wearable optical marker-
based motion capture devices [102]

Table 1.1 Summary of technical characteristics of teleoperation input devices 

Classification Operator activity space Device weight Limb motion capture 
capability 

Desktop force control 
teleoperation devices 

Fixed Fixed to desktop No 

Exoskeleton 
teleoperation devices 

Mostly fixed Heavy Yes 

Wearable teleoperation 
devices 

Free to move Lightweight Yes 

motion intentions [103]. Functionally, new interactive input devices represented by 
exoskeleton input devices and wearable motion capture devices can flexibly capture 
the limb movements and postures of the master end operator, achieving more flexible 
human–robot posture mapping for teleoperation interaction. 

1.2.2 Human-Motion-Based Teleoperated Robot Systems 

With the development of various new motion capture devices and human–robot inter-
action technologies, teleoperation based on the mapping of operator limb movements 
has enhanced the intuitiveness and convenience of controlling remote robots. This 
has become a research hotspot in the current field. This section reviews the frontier 
research work in the field of teleoperation based on limb movement mapping. 

In 2020, a research team from Carnegie Mellon University (CMU) developed 
a vision-based teleoperation system called DexPilot [53]. This system uses four 
fixed RealSense depth cameras to capture the movements of the operator’s hands 
and fingers, mapping and transmitting these movements to a 7-degree-of-freedom
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collaborative robotic arm (KUKA LBR iiwa7 R800) and a four-fingered dexterous 
hand (Allegro Hand) [104], achieving intuitive and dexterous grasping, as shown 
in Fig. 1.8a. By obtaining depth image (RGBD) information, the system uses deep 
neural networks to estimate the position and posture of the operator’s hand. It then 
uses inverse kinematics to solve for the target joint angles of the robotic arm, redi-
recting the end-effector pose of the robotic arm. Furthermore, based on the open-
source finger motion tracking model DART (Dense Articulated Real-Time Tracking) 
[105], it achieves dexterous movement mapping of finger postures, as shown in 
Fig. 1.8b. 

Researchers at the Massachusetts Institute of Technology (MIT) developed a 
humanoid robot named HERMES that can imitate human movements and maintain 
balance [106]. To control HERMES, they designed a custom exoskeleton device 
capable of capturing the operator’s limb movements and sensing the operator’s 
standing balance [107], as shown in Fig. 1.9a. This device not only maps the oper-
ator’s limb movements to the robot to control its joints but also senses the operator’s 
balance state through the operator’s waist movements and posture, adjusting the 
robot’s balance accordingly. Additionally, through posture feedback from the robot, 
the exoskeleton can feed the humanoid robot’s balance state back to the operator, 
achieving closed-loop control. The model diagram of this exoskeleton device is 
shown in Fig. 1.9b.

Researchers from the Technical University of Catalonia (UPC) have proposed a 
framework for human–robot pose mapping [108]. In this work, researchers use the 
Xsens wearable inertial motion capture devices [109] to capture the operator’s full-
body movements in real-time and construct a corresponding skeletal model. They 
also propose a variable admittance controller to use the acquired human poses for 
teleoperation control of the TIAGo robot, as shown in Fig. 1.10a. This system not 
only enables teleoperation of the robotic arm based on hand poses but also achieves

(a) DexPilot System [53] 
(b) DexPilot teleoperated grasping 

demonstration [53] 

Fig. 1.8 DexPilot teleoperation system developed by CMU. a DexPilot system [53]. b DexPilot 
teleoperated grasping demonstration [53] 
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(a) HERMES Robot and its teleoperation 

device [106] 

(b) Model diagram of the balance feedback 

exoskeleton device [107] 

Fig. 1.9 The exoskeleton teleoperation system for HERMES robot from MIT. a HERMES Robot 
and its teleoperation device [106]. b Model diagram of the balance feedback exoskeleton device 
[107]

teleoperation of the chassis based on limb spatial displacement and control of the 
TIAGo robot’s lift degree of freedom using a torso pose mapping strategy. The 
teleoperation process is illustrated in Fig. 1.10b. 

(a) Whole-body skeletal modeling and motion pose 

mapping strategy [109] 
(b) Teleoperation demonstration [109] 

Fig. 1.10 Teleoperation system based on inertial motion capture from UPC. a Whole-body skeletal 
modeling and motion pose mapping strategy [109]. b Teleoperation demonstration [109]
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1.2.3 Human–Robot Motion Mapping Methods 

The teleoperation of redundant degrees of freedom robots is more complex compared 
to traditional robotic arms. Examples include multi-degree-of-freedom robotic arms 
[110], dual-arm collaborative robots [45], and humanoid robots with redundant 
degrees of freedom such as chassis and torso movements. A straightforward approach 
to controlling such robots is capturing operator movements and mapping them to the 
robot’s control system. However, the motion structure of these robots typically differs 
from that of the operator’s limb structure, which make it necessary to do research 
into methods for mapping limb poses obtained from the operator to the robot’s 
motion space. Existing methods for human–robot pose mapping primarily include 
three approaches [111, 112]: joint-to-joint mapping [113, 114], pose mapping [115, 
116], and point-to-point mapping [117, 118]. This section provides a review of these 
three methods and summarizes the classification and technical characteristics of pose 
mapping methods in Table 1.2. 

Joint-to-joint mapping refers to a mapping method where each sensor measuring 
the operator’s motion is directly associated with the motion control of each robot 
joint. This mapping method is suitable for teleoperation scenarios where the slave-
end robot and the operator have similar kinematic structures. If there is a clear 
correspondence between the joints of the human and the robot, the joint angles of the 
human can be directly mapped to the robot’s joint control with minimal configura-
tion scaling or direct mapping such as customized exoskeleton teleoperation systems 
designed for specific robot joint configurations. This mapping method offers signif-
icant advantages in high-load teleoperation tasks involving grasping, but it requires 
the slave-end robot to have a humanoid kinematic structure. Researchers at Tsinghua 
University, led by Fang Bin, utilized this method by capturing specific joint angles 
of the operator using an Inertial Measurement Unit (IMU) and directly mapping the 
collected joint motion information to the Baxter robotic arm, achieving joint-to-joint 
mapping teleoperation [119], as shown in Fig. 1.11

Table 1.2 Summary of classification and technical characteristics of human–robot pose mapping 
methods 

Pose mapping methods Applicable 
mapping 
configurations 

Kinematic solution Applicable 
operators 

Joint-to-joint mapping Master–slave 
isomorphic 

Not required Robotic arms 

Pose mapping Master–slave 
isomorphic/ 
heterogeneous 

Required Robotic arms 

Point-to-point mapping Master–slave 
isomorphic/ 
heterogeneous 

Required Robotic arms, 
dexterous hands 
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Fig. 1.11 Teleoperation of the Baxter robot based on joint-space mapping [119] 

Pose mapping refers to a method that corresponds the operator’s pose to the pose 
in the robot’s coordinate space [120]. Pose mapping attempts to replicate human 
grasping functionality by mimicking the fingers’ pose during operator grasping 
processes, thereby achieving teleoperation of human–robot functionality transfer 
rather than simply replicating the position of the operator’s hands. However, the 
transformation in pose mapping is not perfectly precise, and pose mapping may 
result in unpredictable movements of the slave robot, restricting current research to 
simpler operational scenarios. Pose mapping typically involves theories related to 
machine learning and pattern recognition. Current research largely focuses on gener-
ating strategies for target poses and mapping rules, with more studies in human– 
robot “demonstration learning” and “imitation learning” [121, 122]. Yet, research 
and applications of real-time teleoperation based on pose mapping remain relatively 
limited. 

Point-to-point mapping refers to a method where the position of specified points 
on the operator’s arm or hand is replicated to control designated points on the robot 
to reach corresponding positions in its coordinate space. This method is commonly 
used for pose mapping in teleoperating dexterous hand robots [117], and it is also 
frequently employed when precise positioning of the robot’s end effector is required 
[123]. This method involves processing human limb pose data and performing 
forward kinematic calculations to determine the position of the operator’s hand. 
Subsequently, inverse kinematic calculations are used to derive the spatial state of the 
robot’s joint. Point-to-point mapping typically involves underactuated or redundant 
degree-of-freedom forward and inverse kinematic solutions. Due to differences in 
the kinematic structures of operators and robots, issues such as no solution in inverse 
kinematics or significant discrepancies between the inverse kinematic solution and 
the operator’s configuration may arise. These challenges make general point-to-point
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teleoperation less intuitive, requiring additional training and adaptation time for oper-
ators to correctly operate the system. Moreover, in environments where the remote 
robot system faces non-structural, constrained, or obstacle-rich conditions, operators 
are prone to errors under high workload pressures [124]. 

1.2.4 Communication Technologies for Robot Teleoperation 

The introduction of local wireless networks has increased the flexibility of robotic 
system, simplifying network hardware design and installation processes compared to 
wired network connections [59]. This has also reduced the maintenance requirements 
for communication hardware to some extent, particularly beneficial for mobile robots 
with large spatial movement requirements [59, 125], enabling remote teleoperation of 
robots [60, 126]. However, due to the open and dynamic propagation environment of 
electromagnetic waves, the shared transmission medium, and uncertain performance 
of actual wireless network, instability existsin remote robot control [127]. In addi-
tion, wide-area wired network connections cover extensive ranges, often spanning 
multiple cities, countries, or even globally, enabling operators to remotely control 
robots over varying spatial distances. As remote operation distances increase, the 
expansive topology and complex network management of wide-area networks pose 
challenges such as significant latency and control instability for teleoperation systems 
[128, 129]. 

Zhang et al. from Nanjing Medical University have developed a remote robotic 
arm-assisted ultrasound diagnostic system based on 5G mobile communication tech-
nology. They applied this system during medical missions in remote pastoral areas 
of Xinjiang, where access to medical care is limited. The feasibility and qualita-
tive performance of the system were validated primarily from the perspectives of 
ultrasound imaging quality and network latency. However, quantitative analysis of 
performance metrics related to teleoperation control of the robotic arm and real-
time network performance was not conducted [130]. As shown in Fig. 1.12, the  Joint  
Japanese-French Robotics Laboratory (JRL) used a wide-area network connection to 
preliminarily achieve remote teleoperation control of a 6-degree-of-freedom single-
arm HRP-2 robot from Germany to Japan using a self-built master–slave operating 
lever. Yet, a comprehensive approach integrating remote network performance and 
control system design for teleoperation systems has not been fully developed [131].

To ensure the reliable operation of robotic systems, it is essential during the design 
and deployment phases of industrial robot platforms to simulate and test the system’s 
communication performance [132, 133]. Introducing delays or other communication 
characteristics into controllers to simulate network performance is a common solution 
[134]. However, simulating the statistical performance of real-world network condi-
tions, especially under long-term operation of wireless networks, can be challenging 
[135]. Li et al. simulated the wireless sensor network performance for unmanned 
aerial vehicle (UAV) swarm control in Industrial Internet of Things (IIoT) applica-
tions using the V-REP simulation software [136]. Although this simulation method
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Fig. 1.12 Teleoperation of HRP-2 robot in Japan from Germany [131]

allows for long-term stability testing, it does not assess the general capability to 
handle different network conditions and communication uncertainties. Parameter-
based network simulation methods are often used to validate the coordination of 
Automated Guided Vehicles (AGVs) [137, 138], but they generally do not systemat-
ically evaluate the uncertainties introduced by network communication into control 
systems. 

Hardware-in-the-Loop (HiL) simulation refers to a simulation technique where 
a portion of a physical system is simulated using computer models, while physical 
devices are directly interfaced to participate in the simulation [139–142]. Scholars 
worldwide have conducted extensive research on HiL simulation for robot systems 
[141–144]. Zhou et al. proposed a HiL method for simulating acoustic communi-
cation, discussing its potential application in underwater robot systems, but without 
testing it on robot devices [139, 141]. Marco et al. introduced a HiL system for pre-
validation and optimization of tasks for space station robotic arms on the ground, 
assuming real-time computation and zero communication delay [142–145]. Lamping 
et al. designed a multi-agent UAV system based on the Robot Operation System 
(ROS) [144] and used HiL simulation to test control algorithms in a multi-vehicle 
system [145, 146]. However, existing HiL simulation studies in robot applications 
often focus on controller design and do not address communication system design 
within robotic systems [147, 148]. Markus et al. from ABB and Nokia utilized 
a communication simulation method based on traffic models to study the support 
capabilities of 5G and LTE for industrial robot field applications [58, 60]. However, 
their simulation results are limited to predefined task scenarios and do not evaluate 
the impact of network performance and uncertainties on control performance. A 
common assumption in HiL simulations for robot control systems is ideal commu-
nication conditions, particularly for robotic systems under wireless network control
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Table 1.3 Summary of research on communication systems for robot control 

Research category Reference 
number 

Long-term 
testing 
capability 

Generalization 
across 
different 
application 
scenarios 

Evaluation of 
communication 
uncertainty 

Parameter 
model-driven 
simulation methods 

Underwater 
robots 

[138] Yes Low None (ideal 
communication 
assumption) 

Autonomous 
navigation 
vehicles 

[139, 140] No Low None 

Other 
hardware-in-the-loop 
(HiL) simulation 
testing methods 

HLSP/ 
UWAC 

[142] Yes (only for 
communication) 

Low Yes 

HiL-OC [145] No Low None (ideal 
communication 
assumption) 

5G-robotics [60] Complex 
configuration 
and 
implementation 

Low None 

N-HiL [148] [150] Yes Moderate Yes (only 
applicable to 
Wi-Fi 6) 

[146, 149]. This book provides a comparative summary of current research on control 
and communication co-design in robot control systems, as shown in Table 1.3. 

1.3 Open Challenges and the Prospects 

1.3.1 Challenges for Human-Motion-Based Teleoperation 

Research on Limb Pose Mapping Teleoperation Systems faces challenges: Due to 
differences in motion and configuration between robots and human bodies, accu-
rately transferring operator motion poses to the robot is a major challenge in pose 
mapping teleoperation. Traditional teleoperation processes aim to improve tracking 
accuracy by increasing control frequency, but this often results in jerky and non-
smooth movement paths, reducing the overall system’s operational fluidity and effi-
ciency. Decreasing the output frequency during pose mapping seems an intuitive 
solution, yet ensuring similarity and tracking accuracy between human’s and robot’s 
end trajectories under low-frequency control remains a fundamental issue in pose 
mapping processes. 

Research on dual-arm Pose Mapping Teleoperation faces challenges: For complex 
tasks requiring the involvement of two arms, the master operator must control the
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robotic arms to move to target positions and manipulate end effectors to perform 
grasping actions. During practical operations, frequent switching between controlling 
objects and coordinating the left and right robotic arms is necessary to complete tasks 
efficiently. Traditional teleoperation solutions struggle to coordinate actions among 
different components, often requiring additional input devices for linked control, 
which burdens the master operator. Designing a convenient and efficient dual-arm 
pose mapping method is thus a critical challenge that urgently needs resolution for 
the widespread adoption of teleoperation technologies. 

Challenges in Whole-Body Pose Mapping Teleoperation Research: Robots 
performing homecare or medical assistance tasks typically have mobile bases and 
humanoid torsos, in addition to robotic arm actuators, to control robot movement 
and adjust arm workspace. Traditional master control methods using joysticks and 
button operations are limited in their ability to meet the agile control demands of 
robots with high degrees of freedom in torso structures. The key technical challenge 
in pose mapping teleoperation applications lies in how to utilize the operator’s limb 
motion poses to control actions of the robot’s mechanisms other than the robotic arm 
actuators. 

Challenges in Control and Communication Co-design for Teleoperation Systems: 
Pose mapping teleoperation tasks are often performed in complex and uncer-
tain unstructured environments, demanding high requirements for communica-
tion latency and control reliability. However, the current understanding of how 
network performance affects teleoperation control systems remains unclear. Existing 
network communication architectures designed for teleoperation control systems are 
simplistic and fail to meet the complex task demands in latency-sensitive teleoper-
ation scenarios. Therefore, the key challenge in current pose mapping teleoperation 
control processes lies in the control and communication co-design for robot control, 
specifically tailored for unstructured and complex caregiving assistance tasks. 

1.3.2 Prospects of Human-Motion-Based Teleoperation 

In the process of next-generation teleoperated assistive robot control, perception 
forms the foundation, communication stands as crucial, and control serves as the 
core. However, current research highlights numerous scientific challenges and tech-
nological bottlenecks in collaborative robot teleoperation applications for homecare 
and medical assistance scenarios: (1) The strategy for teleoperation control based on 
operator limb motion data and pose mapping remains unclear, resulting in awkward 
human–robot interaction, slow operator learning curves, and high training costs in 
teleoperating assistive robots for caregiving. (2) There is a lack of dual-arm pose 
mapping teleoperation strategies applied to unstructured caregiving tasks, limiting the 
dexterity required for complex operations by current caregiving assistive robots. (3) 
Methods for teleoperating redundant-degree-of-freedom caregiving assistive robots, 
including their mobile bases and humanoid torso structures, have not been adequately
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developed, restricting their remote operation and motion capabilities. (4) The mech-
anism by which network performance affects control performance in robot teleop-
eration control systems remains unexplored, resulting in the absence of control and 
network co-design strategies tailored for robot pose mapping teleoperation control. 

Building upon these existing challenges and research gaps, this book integrates 
robot control technology with operator limb motion capture technology. It focuses 
on the application needs of teleoperation in unstructured task environments, lever-
aging the flexibility and intuitiveness inherent in human motion poses. The research 
aims to explore the impact mechanism of network performance on control perfor-
mance, establish stable and reliable control network co-design strategies, and meet 
the convenient interaction requirements between operators and caregiving assistive 
robots. Ultimately, the goal is to transform teleoperated caregiving assistive robots 
into a remote “second body” for healthcare workers. 

1.4 Organization of This Book 

This book focuses on research into human–robot pose mapping teleoperation based 
on operator limb motion, covering four main aspects: single-arm pose mapping tele-
operation, dual-arm pose mapping teleoperation control, full-body coordinated tele-
operation, and control-network co-design reliability. The research is conducted with a 
specific focus on applications in Healthcare 4.0. By analyzing operator limb motion 
data, the study explores strategies for human–robot pose mapping teleoperation, 
methods for mapping and coordinating dual-arm actions, and strategies for full-body 
coordinated teleoperation based on operator torso motion data. Furthermore, the book 
investigates control and network co-design strategies for pose mapping teleoperation 
systems to achieve complex and dexterous operations of caregiving assistive robots in 
unstructured task environments. Based on the findings from dual-arm pose mapping 
and full-body coordinated teleoperation control, the research aims to validate the 
application of human–robot pose mapping technology in practical home and medical 
environments. Ultimately, the goal is to achieve technical milestones from “single-
arm pose mapping” to “dual-arm pose mapping”, further to “full-body coordinated 
teleoperation”, and “reliable teleoperation with communication”, supporting func-
tional testing and application research in typical scenarios of remote home caregiving 
and telemedicine assistance in Healthcare 4.0. 

1.4.1 Research Content 

1. Research on Single-arm Human–Robot Pose Mapping Teleoperation Based on 
Limb Motion Data. The study involves inertia sensor data fusion techniques and 
human body posture calculation methods, constructing a kinematic model of 
the human skeleton based on joint chains, and reconstructing the human motion
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posture model. It explores bone motion update transformation algorithms based 
on forward kinematics solutions, proposes a strategy for human–robot motion 
mapping based on the operator’s hand posture, providing pose information input 
for motion control of the slave-end robot. The research establishes a robot single-
arm kinematic model, explores real-time inverse kinematics resolution strategies 
for redundant degrees of freedom robotic arms, and achieves single-arm pose 
mapping teleoperation based on operator limb motion. 

2. Research on dual-arm human–robot motion mapping teleoperation technology 
based on limb motion data. This involves studying the coordination control 
strategy between the dual arms of collaborative robots and dual end effectors, 
establishing a joint control method for robotic arms and end effectors for complex 
operation tasks, and developing real-time pose calculation and control enabling 
strategies for dual-arm redundant degree of freedom collaborative robots. It also 
explores the mechanism of joint-to-joint dual-arm pose mapping in the human– 
robot interaction process, designs an incremental pose mapping strategy based 
on master–slave real-time coordinate transformation, and achieves dual-arm pose 
mapping teleoperation based on the coupling of hand gestures and upper limb 
movements of the operator. 

3. Design of a full-body coordinated pose mapping teleoperation system based 
on limb motion data. This involves researching methods for recognizing the 
dynamic trajectories of the operator’s hand gestures and extracting features based 
on the operator’s lower limb and torso movements. It proposes human–robot 
pose mapping strategies for redundant degree of freedom robots, such as mobile 
chassis and humanoid torso mechanisms, and explores full-body coordinated 
pose mapping methods. This research aims to provide technical support for full-
body coordinated teleoperation of caregiving assistant robots in complex opera-
tion scenarios and to conduct application studies of pose mapping teleoperation 
in real home environments and medical assistance task scenarios. 

4. Research on collaborative design methods for control and networks in human– 
robot pose mapping teleoperation. This research focuses on the reliability require-
ments of communication networks in teleoperation control systems, systemat-
ically exploring the impact mechanisms of network transmission delays and 
reliability on the control performance of robotic pose mapping teleoperation. It 
involves performance testing under local wireless networks and wide-area wired 
networks, analyzing the correlation between real-time network performance and 
control performance. The study investigates collaborative design and selection 
methods for networks based on different control performance requirements, 
providing technical support for reliable teleoperation control under complex 
network conditions and achieving reliable pose mapping teleoperation under 
various network connection conditions. 

The technical route of this book revolves around various key scientific issues in 
human–robot single-arm pose mapping teleoperation, dual-arm pose mapping tele-
operation, full-body coordinated teleoperation, and network and control collaborative
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design for remote care assistant robots. The research is conducted based on “decon-
struction of scientific problems–design of key technical solutions–experimental 
verification and application”, summarized as follows: 

1. Key Technical Research 1—Single-arm Human–robot Pose Mapping Teleop-
eration Technology: By studying human–robot skeletal model reconstruction 
technology based on inertial motion capture, designing end effector trajectory 
tracking strategies for human–robot teleoperation, and developing real-time kine-
matic inversion methods for robotic arms, this research aims to achieve single-arm 
pose mapping teleoperation based on operator motion data. 

2. Key Technical Research 2—Dual-arm Human–robot Pose Mapping Teleopera-
tion Technology: This research focuses on dual-arm incremental pose mapping 
strategies, designing human–robot dual-arm action mapping teleoperation inter-
faces based on upper limb poses, and developing hybrid intuitive control strate-
gies for dual-arm teleoperation based on operator gestures. The goal is to achieve 
dual-arm teleoperation based on upper limb motion pose mapping. 

3. Key Technical Research 3—Full-body Coordinated Pose Mapping Teleoperation 
Technology: By studying mapping control strategies between the operator’s torso 
and lower limb movements and humanoid robot redundant degree-of-freedom 
motion mechanisms, as well as distributed control operation logic, this research 
aims to achieve full-body coordinated pose mapping teleoperation based on 
operator limb movements. 

4. Key Technical Research 4—Teleoperation Network and Control Collaborative 
Design Technology: This involves studying the impact mechanisms of real-time 
network communication performance on teleoperation control system perfor-
mance, building teleoperation control architectures for local wireless networks 
and wide-area wired network connections, and achieving control and network 
collaborative design for pose mapping teleoperation systems. 

5. Engineering Application Research—Remote Care Assistance: Based on the 
completion of the aforementioned key technical research, this research focuses 
on application requirements in the new scenario of Healthcare 4.0. It conducts 
application research and functional verification for two typical scenarios: remote 
homecare and remote medical assistance. 

1.4.2 Structure of this Book 

The organization of this book is illustrated in Fig. 1.13. Targeting the research goal of 
intuitive and convenient interaction between remote care assistant robots and oper-
ators, this study sequentially conducts research in four areas: single-arm human– 
robot pose mapping teleoperation, dual-arm pose mapping teleoperation, full-body 
coordinated teleoperation, and reliable communication teleoperation. Focusing on 
four key technologies: end trajectory tracking mapping, incremental dual-arm pose 
mapping, chassis-torso mapping control, and teleoperation control network collabo-
rative design, the study identifies four critical scientific issues: (1) Intuitive Mapping
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Teleoperation Strategy for End Pose of Human–Machine Interaction; (2) Mechanism 
of Dual-Arm Pose Mapping Teleoperation; (3) Full-Body Coordinated Pose Mapping 
Strategy; (4) Collaborative Design Method for Teleoperation Control Networks. 
These studies aim to improve the intuitiveness and convenience of remote inter-
action between teleoperation robots and operators. This book lays the theoretical 
and technical foundation for the practical application and promotion of the next-
generation remote homecare robots and remote medical assistance robots, geared 
towards the new scenario of Healthcare 4.0 [149]. 

This book focuses on the study of human–robot pose mapping teleoperation tech-
nology based on body motion data. The research aims to provide technical support 
for achieving high-dynamic and strong-environment interaction tasks in care assis-
tance through human–robot pose mapping teleoperation. The main contributions of 
this book are summarized as follows:

(1) Pose Mapping Methods for Robotic Arms Based on Body Motion Data: 
Addressing the unclear human–robot pose mapping relationship and the diffi-
culty in coordinating end-effector control during the teleoperation of robots 
based on body motion. This research explores the end-effector trajectory

Fig. 1.13 The organizational structure of this book 
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tracking strategy in the human–robot motion mapping process, incremental 
pose mapping strategy based on real-time coordinate transformation, and the 
coordination control method of robotic arms and end-effectors during dual-arm 
teleoperation control. One of the main contributions of this dissertation is the 
realization of intuitive pose mapping teleoperation for robotic arms.

(2) Full-Body Coordinated Teleoperation Control Methods Based on Body Motion 
Data: Redundant degrees of freedom humanoid robots adjust the workspace of 
robotic arms through body motion mechanisms such as the chassis and torso, 
making full-body human–robot motion coordination challenging. This research 
investigates human body motion recognition and torso motion analysis strate-
gies, exploring pose mapping strategies for the chassis and humanoid torso 
mechanisms based on operator body motion. Realizing full-body coordinated 
teleoperation is the second main contribution of this dissertation. 

(3) Network-Control Coordination Design Methods for Pose Mapping Teleopera-
tion Systems: Addressing complex network communication conditions in tele-
operation control systems, this research tests long-term statistical performance 
indicators in delay-sensitive operation scenarios under new wireless network 
connection conditions, investigates the impact mechanism of network perfor-
mance on robot control performance, and develops a set of network-control coor-
dination strategies for different network characteristics to meet various control 
performance requirements. Achieving human–robot pose mapping teleopera-
tion under different network connection conditions is the third main contribution 
of this dissertation. 
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Chapter 2 
Unimanual Human-Motion Based Robot 
Teleoperation 

Abstract This chapter addresses the challenge of accurately mapping and control-
ling a robot based on the operator’s body movements using a teleoperation system. 
The key issue lies in translating human body posture and intent into robot movements, 
considering the differences between human bodies and robots. Traditional methods 
improve tracking accuracy by increasing control frequency, but they can lead to 
uneven robot speeds and jerky motion. This study uses ABB’s dual-arm collabora-
tive robot, YuMi, and Noitom Perception Neuron (PN) motion capture device to track 
the operator’s upper limb movements. The design involves a single-arm human pose 
mapping control interface and a distributed communication system between the robot 
and PN device. The primary challenge addressed is ensuring smooth and accurate end 
trajectory tracking despite low-frequency pose data output. To solve this, the chapter 
proposes a local path resampling algorithm. This method improves the tracking accu-
racy and trajectory similarity between the operator and robot, ensuring continuous 
trajectory mapping and tracking. Comparative experiments with varying resampling 
frequencies demonstrate that the best trajectory tracking occurs at a specific resam-
pling rate, with minimal tracking errors in both simple (1.05 mm) and complex 
(5.10 mm) trajectories. 

Keywords Human-motion based teleoperation · Single-arm motion mapping ·
Tracking accuracy · Robot operation system ·Wearable motion capture 

2.1 Introduction 

It is an intuitive and convenient teleoperation method to map and control the robot 
by capturing the operator’s body movements, in which the operator’s body move-
ments capture is an indispensable part of the pose mapping teleoperation system. 
In the actual teleoperation process, due to the differences between robots and the 
human bodies, how to accurately transmit the operator’s motion posture and oper-
ation intention to the robot has become a major challenge. To ensure the similarity 
and tracking accuracy between the robot’s end trajectory and the operator’s end

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
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trajectory is a basic issue in the pose mapping process. Based on the robot’s built-in 
kinematics solver, the tracking accuracy of traditional teleoperation system can be 
improved by increasing the control frequency, but this could lead to uneven speeds 
of the robot’s end in the motion process, and the tracking path will be stuck and 
not smooth. This chapter takes ABB’s dual-arm collaborative robot YuMi as the 
research platform [1], based on Neuteng’s Perception Neuron (PN) motion capture 
device to capture the operator’s upper limb movements [2], the control interface 
design of single-arm human pose mapping and the distributed communication archi-
tecture design between the robot and PN motion capture device are realized [3]. To 
solve the problem of uneven motion trajectory in the process of teleoperation is an 
intuitive solution, however, how to ensure the tracking accuracy of the end trajectory 
when low-frequency pose data mapping is output is a key challenge in teleoperation. 
In this chapter, a pose mapping method for end trajectory tracking based on local 
path resample constraints of operator end trajectory is proposed, which improves the 
tracking accuracy of master–slave end trajectory when low-frequency pose data is 
output. A comparison experiment of master–slave trajectory tracking is carried out 
to evaluate the performance of the proposed method. 

2.2 Architecture of Human-Motion Based Teleoperation 
System 

The control flow block diagram of the teleoperation control system designed in this 
chapter is shown in Fig. 2.1. The whole system can be divided into two parts: human 
motion capture system and robot pose mapping control system. Based on the multi-
node distributed control system architecture of ROS, through the wearable motion 
capture device PN, the body movement data of the master operator is obtained, and 
the dual-arm YuMi robot of the pose mapping teleoperation system is controlled to 
execute the output action command. The live action footage of the slave robot is 
fed back to the master operator through the cloud camera, so that the operator can 
perceive the operation status of the remote robot in real time.

2.2.1 Inertia Motion Capture and Pose Data Transformation 

The motion capture system consists of a wearable motion capture suit and corre-
sponding software program, which can acquire, process and transmit the wearer’s 
motion signals in real time through a wireless connection. Motion capture suite 
PN is a versatile and adaptable motion capture device composed of a multi-node 
Inertial Measurement Unit (IMU). Each IMU consists of a gyroscope, accelerom-
eter, and magnetometer. All IMU nodes are fastened to the operator with elastic 
straps. Hub is the central processing unit of the wearable mobile capture device PN,
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Fig. 2.1 Detailed control block diagram of the proposed telerobotic system, reprinted from Ref. 
[4], CC BY 4.0

which can transmit and decode the data of each IMU node through Wi-Fi coding 
and transmit it to the upper computer software Axis Neuron. Axis Neuron is the 
upper computer software connected to PN device running in Windows operating 
system, receiving motion data from PN hardware, then processing and exporting 
the motion data of wearers into a unified BVH (BioVision Hierarchy) format [5] to  
broadcast and transmit motion data stream. In order to realize the communication 
between PN motion coding data and robot control host computer, this book realizes 
the data transmission communication between operator and robot based on ROS_ 
Serial communication package and Peception Neuron Data Reader SDK. 

According to the operator’s upper limb movement data obtained from IMU, a 
human skeleton joint chain model is constructed, as shown in Fig. 2.2. The model 
consists of hip node, spine 0, spine 1, spine 2, spine 3, shoulder, upper arm, lower 
arm, and hand node. In the process of motion mapping, the operator’s hip node is 
set as the root node of the human skeleton model, and the hand node is set as the 
end node of the master operator. Other nodes are matched with other nodes in turn 
according to their relative motion. The two adjacent nodes are respectively parent 
node and child node, the child node is the one that further from the hip node.

During the capture of body movements, the inertial motion capture device PN 
and the upper computer on the robot end communicate with each other via the TCP/ 
IP protocol based on the ROS_Serial tool package for synchronized data transmis-
sion. In this section, 18 IMU nodes are used for motion capture (excluding the hand 
node, only the limbs and torso nodes are included, among which the upper arm 
includes three nodes, namely the upper arm, the lower arm and the shoulder), and 
the maximum real-time output frequency of the inertial motion capture system is 
120 Hz. The upper computer software Axis Neuron displays the operator’s actions 
in real time through the animated bone model. Due to the difference in body size 
of different wearers, the initial posture of the animated bone model does not match
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Fig. 2.2 The skeleton model of the upper limb and the IMUs on the body, reprinted from Ref. [4], 
CC BY 4.0

the posture of human. When the operator wears it for the first time, they can set the 
parameters of their arm length, shoulder width and height in Axis Neuron, create the 
corresponding personalized bone model, and execute the motion calibration proce-
dure to synchronize the bone model with the operator’s movement. Table 2.1 lists 
the detailed technical parameters of the PN wearable inertial motion capture device. 

The human motion data in BVH format describes the global motion data of each 
node in the global coordinate system: displacement, velocity and quaternions, and 
the relative motion data of the child node in the local coordinate system of the parent 
node: acceleration and angular velocity. In order to realize the transformation of the

Table 2.1 Technical parameter table of wearable inertia motion capture device PN 

Device Parameter Parameter value 

IMU node of the PN Dimension 12.5 mm × 13.1 mm × 4.3 mm 

Wireless connection 
range 

360° 

Accelerometer range ± 16 g 
Gyroscope range ± 2000 dps 
Minimum resolution 0.02° 

Nodes used in this book 18 

Hub processing unit of PN Dimension 59 mm × 41 mm × 23 mm 

Minimum usable nodes 3 

Maximum number of 
Connectable nodes 

32 

Maximum output 
frequency 

18 nodes:120 FPS 
32 nodes:60 FPS 
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local coordinate system of each skeleton node in the global coordinate system, the 
position data and attitude data of each child node in the local coordinate system are 
used to define the transformation relationship with its parent node. The displacement 
vector and rotation matrix of the child node relative to the parent node are calculated, 
and the local transformation matrix is obtained as shown in Eqs. (2.1) and (2.2). 

R = Rot(y, θy)Rot(x, θx)Rot(z, θz) (2.1) 

M i−1 
i =

[
R T  
0 1

]
(2.2) 

where R represents the rotation matrix of the child node in the local coordinate system 
of the parent node; θy, θx, θz respectively represents the euler angle along the Y axis, 
X axis, Z axis; Rot(y, θy), Rot(x, θx), Rot(z, θz) respectively represents the rotation 
matrix around each single axis of the Y axis, X axis, Z axis; The vector T represents 
the displacement vector along the X axis, Y axis, Z axis; M i−1 

i represents the local 
transformation matrix between parent node i − 1 and child node i. 

Taking right arm transformation as an example, coordinate transformation is 
performed from the operator’s hip root node to the hand end node to obtain the 
overall transformation matrix in the motion chain of the human skeleton model, as 
shown in Eq. (2.3) below: 

M 0 n =
∏n 

i=1 
M i−1 

i (2.3) 

where M 0 n is the pose transformation matrix n represents the Nth node in the 
Kinematic chain, n = 0 represents hip root node. 

2.2.2 Components of Single-Arm Robot Teleoperation System 

The operating system of YuMi robot is consistent with that of ABB ordinary six-axis 
industrial robots. In this book, RobotWare 6.04 system running in IRC5 controller 
is used to control the twin robot arms of YuMi robot. The single arm of YuMi robot 
is composed of redundant seven-axis robot arm and end actuator (two-finger servo 
jig), which are connected to the main control board through industrial Ethernet for 
independent communication. The detailed technical parameters of YuMi robot are 
shown in Table 2.2.

In this book, the control frame of robot is designed based on ROS-Industrial. 
According to the sample-massage protocol, RAPID language is used to program and 
configure the motion control interface of YuMi robot arm and end-effector through 
Socket communication in the application layer of the robot controller. An Ubuntu 
industrial computer configured with ROS is used as the upper computer for YuMi 
robot control, and the hardware layer is connected based on abb-driver function
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Table 2.2 Technical parameters of ABB YuMi robot 

Device Parameter entry Parameter value 

YuMi (IRB14000) Number of robot arms 2 

Single-arm axis count 7 

Single-arm span 0.559 m 

Single-arm Load 0.5 kg 

Protection standard IEC529 IP30 

Power < 0.17 kW  

End-effector maximum speed 1.5 m/s 

End-effector maximum acceleration 11 m/s2 

Repeatability positioning accuracy 0.02 mm 

Self-weight 38 kg 

Smart gripper (two-finger servo 
gripper, no vision, no sucker) 

Self-weight 0.23 kg 

Maximum load 0.27 kg 

Input voltage 24 VDC 

Maximum power 9 W  

Servo stroke 0−50 mm 

Maximum clamping speed 25 mm/s 

Finger repeated positioning accuracy 0.05 mm 

Maximum holding power 20 N 

Clamping force control accuracy 3 N

package. Motion planning and control of YuMi robot arms are completed in MoveIt 
based on the YuMi open source URDF model provided by Krug et al. [6]. Since 
YuMi’s robot arms and end actuator are independently controlled by Socket commu-
nication according to different network addresses, this chapter divide YuMi robot 
into four independent motion planning groups: left arm, right arm, left hand and 
right hand. The base coordinate system of YuMi robot is located at the center point 
of the front edge of the base, so as to facilitate the unified coordinate transformation 
of the left and right arms. 

There are two ways to solve the robot’s target state based on URDF model by using 
various kinematic solvers in MoveIt: (1) Given the target joint space directly, meaning 
the robot interpolates from its current joint space to the target joint space during the 
path planning process by specifying the angular rotation of each joint axis; (2) Given 
the target end-effector position and orientation, the controller needs to first inverse 
kinematics to determine the joint space corresponding to the end-effector target pose. 
Then, based on the inverse kinematics solution, interpolate from the initial state to 
the target state in the joint space, thereby outputting temporal joint control data. The 
two motion planning forms mentioned above determine two different human–robot 
action mapping rules: direct mapping in joint space and point-to-point mapping at the 
end effector, as illustrated in Fig. 2.3. Due to the differences between the operator’s
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Fig. 2.3 Two types of motion planning methods in ROS moveit 

joint configuration and the robot’s joint configuration, the master end cannot directly 
obtain continuous joint data output corresponding to the slave robot’s configuration. 
Therefore, this section adopts a point-to-point mapping at the end effector and inverse 
kinematics at the slave end to achieve real-time human–robot pose mapping for 
teleoperation. 

Based on the previously implemented human body pose transformations captured 
by the operator, the global transformation matrix of the operator’s end-effector hand 
node relative to the hip node can be obtained. The data from the wearable device 
is connected to the industrial control computer on the robot side via ROS Serial, 
and the real-time pose transformation data is sent, after the ROS TF coordinate 
transformation [7] the pose data of the operator’s hand node in the body root node 
coordinate system can be obtained. Subsequently, based on the kinematic model of the 
robot side, the target joint space can be solved inversely to output real-time temporal 
joint data for controlling the slave-end manipulator. The real-time transformation 
matrix of the operator’s hand coordinate system in the world coordinate system can 
be represented by the following Eq. (2.4). 

Mh =
[
Rh Th 
0 1

]
= M 0 n × M global 0 (2.4) 

where M global 0 is the transformation matrix for the operator’s hip root node relative to 
the origin of the world coordinate system, Rh and Th respectively respresent the rota-
tion matrix and translation vector of the operator’s hand coordinate system relative 
to the world coordinate system.
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The operator’s hand position ph is obtained by solving for Th, and the operator’s 
hand orientation pr is obtained by solving for Rh. As the representation of the robot 
arm’s end-effector orientation use Euler angles, deadlocks are prone to occur during 
the solving process. To ensure the continuity of pose mapping, in this section of 
teleoperation, the orientation qr of the robot end effector is kept consistently oriented, 
during teleoperation, the operator’s hand pose is directly mapped to the robot end, 
with the operator’s hand pose qh remaining relatively stable, the design of mapping 
strategies for pose transformations will be explored in Chap. 3 of this book. 

To utilize the operator’s hand pose data to control the robot’s end-effector pose, 
it is necessary to ensure that their base coordinate systems are aligned. Coordinate 
transformation is then performed to align the operator’s base coordinate system with 
that of the robot’s. Assuming that the relative position between the operator’s base 
coordinate system and the robot’s base coordinate system is pδ, the transformation 
relationship between the robot’s end-effector position pr and the operator’s end-
effector position ph should be as shown in Eq. (2.5). 

pr = ph + pδ (2.5) 

From the input of the operator’s motion data to the output of the robot’s joint 
motion data, the inverse kinematic solving for the target joint states consumes a 
considerable amount of time. Although this point-to-point direct mapping rule can 
control the robot’s end effector to accurately reach the target position in its base 
coordinate system in one calculation output, it is difficult to ensure the smoothness 
of continuous action and tracking similarity with the operator’s hand trajectory. In 
order to solve the problem of continuous human–robot end trajectory tracking based 
on point-to-point direct mapping rules, a single-arm pose mapping method based on 
local path resample of end trajectory is proposed in this chapter. 

2.3 Single-Arm Motion Mapping Based on Trajectory 
Resampling 

2.3.1 Path-Constrained Trajectory Tracking Algorithm 

Based on the point-to-point end-effector mapping method, this section proposes a 
new method for human–robot pose mapping based on local path resampling of end-
effector motion trajectories. By periodically resampling the local trajectory of the 
operator’s hand, it constrains the motion path of the slave robot, making it more 
suitable for trajectory tracking based on continuous motion of the operator’s hand. 
The specific process of this method is described as follows: At predefined intervals
�T , the hand pose data of the operator [ph(t −�T − δt : t), qh(t −�T − δt : t)] and 
the current end effector pose data of the robot [pr(t), qr(t)] are input as constraint 
points for the robot’s desired motion path planning, where δt is the refresh time for
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path planning, including the time taken for kinematic solving and the transmission 
of motion data. Within the next local path sampling time�T , the point-to-point end-
effector pose data corresponding to the local path trajectory of the master operator 
[ph(t+δt : t+�T +δt), qh(t+δt : t+�T +δt)] is taken as the expected end-effector 
motion data for the robot’s next sampling cycle, and output to the robot controller for 
execution. The pseudocode implementation of the local path resampling mapping 
method is shown in Algorithm 2.1. 

Figure 2.4 shows the cyclic execution process of the constrained human robot 
pose mapping method based on local path resampling. Setting the local sampling 
interval �T for the operator’s continuous trajectory, δt represents the refresh time 
for the robot’s path planning, simultaneously, setting the actual execution time �T 
for the robot’s movements, which implies that the robot’s end-effector must move 
faster than the operator’s hand. Under the rule of looping through re-sampling local 
trajectories, the robot’s actual execution time will lag the operator’s actual movements 
by �T + 2δt. The workflow of the algorithm can be flexibly adjusted in practical 
use, allowing for a time interval between each sampling cycle of the operator’s hand 
trajectory. Simultaneously, it is possible to optimize the configuration of values �T 
and δt during the mapping process based on different operators’ motion speeds, and 
δt is related to the actual motion performance of the robot used. The value of �T is 
achieved in subsequent experiments by changing the resampling frequency Fre, and 
their relationship is represented by the following Eq. (2.6).
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Fig. 2.4 Motion mapping execution process based on trajectory resampling 

Fre = 1

�T 
(2.6) 

2.3.2 Human–Robot Motion Tracking Performance 
Evaluation 

To verify the master–slave trajectory tracking performance of the human–robot 
pose mapping method based on local path resampling constraints, this section 
designs end-effector trajectory tracking experiments with two levels of complexity. 
Here uses simple spatial trajectories such as horizontal lines “—”, vertical lines 
“|”, triangles “�”, and arcs “ ”, and chose the spatial writing patterns of the 
letters “Z”, “J”, and “U” (representing the abbreviation for Zhejiang University) 
as complex trajectories. To explore the impact of local path re-sampling frequency 
on end-effector trajectory tracking performance, the above two groups of trajec-
tories are performed by the operator under five different resampling frequencies 
(Fre = 2.0Hz, 3.5Hz, 5Hz, 7.5Hz, 10.0Hz) during the pose mapping teleopera-
tion. Due to the discrepancy in end-effector velocities between the robot and the 
operator, there inevitably exists a delay between the end-effector motion trajectory 
of the robot and the hand motion trajectory of the operator during teleoperation. To 
objectively assess the similarity of end-effector motion trajectories between the robot 
and the operator, the study applies the Dynamic Time Warping (DTW) algorithm 
to reduce temporal distortion in trajectory signals [8], and computes the euclidean
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distance between corresponding spatial trajectory curves (the following content uses 
the DTW distance representation) to quantify the similarity between trajectories. 

2.3.2.1 Evaluation Experiment of Basic Trajectory Tracking 
Performance 

In the experiment of simple spatial trajectories tracking, operators draw four simple 
trajectories “—”, “|”, “�”, “ ” respectively, during a series of teleoperation exper-
iments. In the robot’s upper computer program, the proposed local path resampling 
constraint rules and master–slave pose mapping method are deployed, the end effector 
of the robot executes motion paths according to the trajectory of the operator’s hand, 
to ensure the reliability of performance evaluation data, each set of trajectory tracking 
experiments is respectively repeated five times at five different resampling frequen-
cies. Figure 2.5 provides a visual representation of the master–slave end tracking 
performance for the four simple trajectories at Fre = 7.5Hz. 

The tracking signals of the four simple trajectories at the 7.5 Hz resampling 
frequency, as shown in Fig. 2.5, using DTW to temporally align raw positional data 
signals, the results are depicted in Figs. 2.6, 2.7 and 2.8.

Fig. 2.5 The trajectory tracking performance of four simple trajectories at Fre = 7.5Hz, reprinted 
from Ref. [4], CC BY 4.0 
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(a) (b) (c) 

Fig. 2.6 Raw and DTW aligned position data of the trajectory “—”. a X-axis position. b Y-axis 
position. c Z-axis position 

(a) (b) (c) 

Fig. 2.7 Raw and DTW aligned position data of the trajectory “|”. a X-axis position. b Y-axis 
position. c Z-axis position 

(a) (b) (c) 

Fig. 2.8 Raw and DTW Aligned position data of the trajectory “�”. a X-axis position data. b Y-axis 
position data. c Z-axis position data
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Figure 2.6 shows the position signal data along the XYZ axes during the “— 
” trajectory mapping process. It can be observed that during the creation of this 
trajectory, the position changes significantly along the Y-axis. Due to the differences 
in motion characteristics between the operator and the robot, the position signals 
along the X and Z axes are not aligned. Therefore, using DTW for time-domain 
correction results in better alignment of the signals, facilitating further analysis and 
post-processing. 

Figure 2.7 shows the position signal data along the XYZ axes during the “|” trajec-
tory mapping process. It can be observed that, unlike the “—” trajectory mapping 
shown in Fig. 2.6, the position changes significantly along the Z-axis during the 
creation of this trajectory. Furthermore, DTW time-domain correction is applied to 
the position signals along the X and Y axes to achieve time-domain alignment. 

Figure 2.8 shows a comparative chart of the position signal data for the operator’s 
hand forming the “�” trajectory. Compared to the simpler “|” and “—” trajectories 
previously discussed, the “�” trajectory primarily exhibits positional changes along 
the Y and Z axes. During the trajectory formation, the operator remains mostly within 
a spatial plane perpendicular to the X axis, hence changes in the X-axis position are 
not significant. The comparison shows that the “�” trajectory has more unaligned 
parts in the original signals compared to the “|” and “—” trajectories, thus the effects 
of DTW (Dynamic Time Warping) time-domain correction are more pronounced. 

Figure 2.9 shows the end position data changes during the operator’s formation 
of the “ ” trajectory. Unlike the previous “|”, “—”, and “�” trajectories, the “ ” 
trajectory exhibits varying degrees of changes along the X, Y, and Z axes. The compar-
ison of the original signals with those aligned after DTW time-domain correction is 
shown in the figure. 

After obtaining the trajectory data, the DTW distance between the operator’s and 
robot’s end trajectories is calculated using the DTW algorithm. To more comprehen-
sively assess the similarity of human–robot end positions and postures at trajectory 
path points, this section calculates the root mean square values of position data PRMS 

and posture data QRMS as the evaluation metrics for overall curve position tracking

(a) (b) (c) 

Fig. 2.9 Raw and DTW aligned position data of the trajectory “ ”. a X-axis position data. b Y-axis 
position data. c Z-axis position data 
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error and posture tracking error, respectively. The calculation methods are shown in 
Eqs. (2.7) and (2.8). 

PRMS =
√

(x2 + y2 + z2)/3 (2.7) 

QRMS = √(r2 + p2 + y2)/3 (2.8) 

Table 2.3 displays the DTW distances between the position data (x, y, z) and 
posture data (r, p, y) of two trajectories, one from an operator and the other from a 
robot, taking the mean of five repeated experiments for each trajectory. Statistical 
analysis data is illustrated in Fig 2.10a and b. From the statistical analysis results 
in Table 2.3 and Fig. 2.10, it can be observed that the DTW distances decrease as 
the trajectory resampling frequency increases, indicating an improving similarity in 
position and posture between human–robot end trajectories. At 7.5 Hz and 10.0 Hz, 
the DTW distances do not exceed 2.00 mm, but the distance at 10.0 Hz is 1.80 mm, 
which is higher than the 1.05 mm at 7.5 Hz. This is due to the higher number 
of sampling points per unit time at 10.0 Hz, making motion planning more chal-
lenging and reducing the similarity of the final movement paths. Overall, the results 
from the simple spatial trajectory tracking experiment suggest that the best tracking 
performance (PRMS = 1.05 mm) can be achieved at Fre = 7.5Hz.

2.3.2.2 Complex Trajectory Tracking Performance Evaluation 
Experiment 

In the experiment with complex hand trajectories, the operator creates the writing 
trajectories of the three letters “Z”, “J”, and “U” in space, as illustrated in Fig. 2.11. 
To ensure data reliability, this section conducts the complex letter writing trajectory 
tracking experiment five times at five different resampling frequencies. Figure 2.11 
displays the remote operation trajectory tracking performance of the three complex 
trajectories at Fre = 7.5Hz  during the experiment. Similar to the simple trajectory 
tracking experiment, the DTW algorithm is used to compare the remotely operated 
mapping trajectory data obtained from human–robot interaction. During this process, 
the data from five repeated experiments for each trajectory at each frequency are 
averaged, as shown in Table 2.4.

Furthermore, an overview of data from Tables 2.3 and 2.4 indicates that the DTW 
distances for complex trajectories are significantly greater than those for simple 
trajectories. Similar to the simple trajectory experiment, the root mean squares of 
position and posture data are calculated, as shown in Fig. 2.12a and b, with the posi-
tional tracking deviations for operators and robots in complex trajectories remaining 
within 11.00 mm. From the results of experiments at sampling frequencies above 
3.5 Hz, a similar conclusion to that of the simple trajectory experiments can be drawn: 
the higher the resampling frequency, the better the robot’s tracking performance, also 
achieving the best tracking performance for complex trajectories at Fre = 7.5Hz
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Table 2.3 DTW distances for human–robot motion tracking for simple trajectories 

Fre (Hz) Trajectory Position data (mm) Posture data (rad) 

x y z PRMS r p y QRMS 

2.0 — 28.71 0.04 17.35 19.37 0.11 1.27 0.36 0.76 

| 2.80 0.82 7.25 4.51 0.04 0.00 0.00 0.00

� 2.79 18.63 44.10 27.69 0.11 0.04 0.06 0.04 

66.90 12.22 1.03 39.27 0.00 0.00 0.24 0.15 

Mean 25.30 7.93 17.43 18.32 0.06 0.33 0.17 0.21 

3.5 — 0.50 0.32 0.35 0.40 0.00 0.02 0.00 0.01 

| 0.12 0.00 0.10 0.09 0.00 0.01 0.00 0.00

� 13.62 65.71 5.74 38.88 0.04 0.24 0.39 0.26 

0.70 1.32 0.03 0.86 0.00 0.00 0.00 0.00 

Mean 3.74 16.84 1.55 10.00 0.01 0.07 0.10 0.07 

5.0 — 0.01 0.16 0.01 0.09 0.00 0.00 0.00 0.00 

| 0.14 0.17 0.31 0.22 0.00 0.02 0.02 0.01

� 1.06 30.00 3.18 17.43 0.01 0.00 0.11 0.06 

11.39 0.61 4.35 7.05 0.01 0.17 0.02 0.10 

Mean 3.15 7.73 1.96 4.95 0.01 0.05 0.04 0.03 

7.5 — 0.01 0.21 0.02 0.12 0.00 0.00 0.00 0.00 

| 1.09 0.12 0.45 0.69 0.00 0.01 0.01 0.01

� 0.31 4.60 1.73 2.84 0.00 0.01 0.03 0.03 

0.64 0.52 2.11 1.31 0.01 0.00 0.00 0.01 

Mean 0.51 1.36 1.08 1.05 0.00 0.01 0.01 0.01 

10.0 — 0.01 0.49 0.05 0.29 0.00 0.00 0.00 0.00 

| 0.01 0.01 0.11 0.06 0.00 0.00 0.00 0.00

� 0.40 10.26 1.15 5.97 0.00 0.00 0.03 0.03 

2.40 1.07 1.32 1.70 0.00 0.00 0.01 0.02 

Mean 0.71 2.96 0.66 1.80 0.00 0.00 0.01 0.01

(PRMS = 5.10 mm). Since there is almost no change in the operator’s hand orien-
taion during the drawing of the three complex trajectories, a clear representation of 
orientaion tracking performance cannot be derived from Table 2.4.
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(a) (b) 

Fig. 2.10 Statistical analysis of tracking performance for simple trajectories, reprinted from Ref. 
[4], CC BY 4.0. a Position tracking accuracy. b Posture tracking accuracy

Fig. 2.11 Tracking performance of three complex trajectories at Fre = 7.5Hz

2.4 Summary 

Capturing the limb motion postures of an operator to map and control a robot is a 
convenient and intuitive method of teleoperation. This chapter focuses on the YuMi 
dual-arm collaborative robot as the teleoperation slave control entity, using the wear-
able inertial motion capture device PN to capture the master operator’s limb motion
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Table 2.4 DTW distances for human–robot motion tracking for complex trajectories 

Fre (Hz) Trajectory Position (mm) Orientaion (rad) 

x y z PRMS r p y QRMS 

2.0 Z 2.45 26.78 2.71 15.60 0.01 0.07 0.09 0.06 

J 0.13 1.35 8.95 5.23 0.03 0.00 0.01 0.01 

U 4.59 0.46 4.16 3.59 0.01 0.05 0.02 0.03 

Mean 2.39 9.53 5.27 6.44 0.02 0.04 0.04 0.03 

3.5 Z 0.33 52.07 0.24 30.07 0.01 0.07 0.15 0.09 

J 0.94 0.27 9.36 5.43 0.07 0.00 0.09 0.05 

U 0.99 2.95 4.56 3.18 0.03 0.00 0.02 0.01 

Mean 0.75 18.43 4.72 10.99 0.04 0.02 0.09 0.05 

5.0 Z 7.08 28.45 7.44 17.47 0.05 0.23 0.09 0.14 

J 1.71 1.66 7.08 4.31 0.05 0.01 0.01 0.01 

U 4.94 1.37 3.41 3.56 0.02 0.14 0.10 0.10 

Mean 4.58 10.49 5.98 7.46 0.04 0.13 0.07 0.08 

7.5 Z 2.00 16.99 1.79 9.93 0.01 0.08 0.05 0.10 

J 1.47 1.11 2.54 1.81 0.03 0.03 0.02 0.05 

U 5.80 2.97 8.87 6.35 0.05 0.07 0.03 0.09 

Mean 3.09 7.02 4.40 5.10 0.03 0.06 0.04 0.08 

10.0 Z 0.56 17.71 1.29 10.26 0.02 0.01 0.10 0.10 

J 1.67 0.68 38.55 22.28 0.13 0.06 0.01 0.14 

U 0.96 1.20 5.17 3.11 0.02 0.01 0.04 0.05 

Mean 1.07 6.53 15.00 9.47 0.05 0.03 0.05 0.05

(a) (b) 

Fig. 2.12 Statistical analysis of tracking performance for complex trajectories. a Position tracking 
accuracy. b Orientation tracking accuracy
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data, and establishes a human skeleton model motion chain through coordinate trans-
formation. A distributed communication architecture design between the YuMi robot 
and the wearable device was implemented based on ROS, achieving point-to-point 
end pose mapping control. A method based on local path resampling constraints for 
human–robot motion mapping is proposed, which can accomplish the slave robot’s 
mapping and tracking of the master operator’s continuous hand trajectory. Compar-
ative experiments were also designed to evaluate trajectory tracking performance, 
identifying the optimal resampling frequency for the best trajectory tracking results. 
The main conclusions of this chapter are as follows: 

(1) A teleoperation system for mapping the upper limb movements of the master 
operator to control the pose of the slave robot has been designed and imple-
mented, enhancing the convenience and intuitiveness of the operator’s remote 
control of the robot. By performing coordinate transformations on the skeletal 
model data obtained from motion capture, the overall transformation matrix in 
the human skeleton model motion chain is derived, thereby obtaining the oper-
ator’s hand pose data in the global coordinate system. Based on ROS, real-time 
data transmission of the operator’s end pose data to the slave robot’s controller 
has been implemented, laying the foundation for the development of human– 
robot pose mapping teleoperation control algorithms and verification of control 
performance. 

(2) Based on the operator’s end pose mapping to the slave robot’s desired end 
pose, individually solving and outputting control commands cannot achieve 
high-frequency pose mapping, leading to uneven speeds in the robot’s end 
effector movement and jerky, unsmooth tracking paths. This chapter intro-
duces a human–robot motion mapping algorithm based on local path resampling 
constraints. In the mapping process, the operator’s upper limb hand pose data and 
the current robot’s end effector pose data are planned through path resampling. 
This approach improves the tracking accuracy and similarity of the master–slave 
trajectories during low-frequency pose mapping outputs, achieving continuous 
trajectory tracking and mapping between the operator and the robot.。 

(3) To validate the proposed local path resampling constraint algorithm for contin-
uous trajectory tracking performance in pose mapping teleoperation, perfor-
mance tests are conducted on four simple trajectories and three complex spatial 
trajectories at five different resampling frequencies. The euclidean distances 
between corresponding spatial curves are calculated to quantitatively assess the 
similarity of the trajectories. The results indicate that both simple and complex 
trajectories achieve the best tracking performance at Fre = 7.5Hz. For  simple  
motion trajectories such as straight lines and complex motion trajectories such as 
spatial characters, the human–robot end-trajectory tracking errors are reduced to 
position tracking error performances of PRMS = 1.05 mm and PRMS = 5.10 mm, 
respectively.
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Chapter 3 
Bimanual Human-Motion Based Robot 
Teleoperation 

Abstract This chapter introduces a dual-arm pose mapping teleoperation method 
that addresses the control challenges associated with robotic dual-arm coordination. 
Unlike single-arm systems, dual-arm robots can execute more complex tasks, but 
controlling both arms simultaneously can be burdensome for the operator. Tradi-
tional pose mapping systems struggle with coordinating actions between the arms 
and often require additional input devices for linked control. Building on single-
arm teleoperation techniques, this chapter proposes a flexible and intuitive dual-arm 
pose mapping approach that allows seamless switching between operator control 
and fixture control while improving task efficiency. A significant improvement in 
this method is the incremental pose mapping strategy, which uses real-time relative 
human–robot pose transformation. This eliminates the need for tedious absolute coor-
dinate calibration at the start of each task, simplifying the setup process and enhancing 
flexibility during operation. To validate the effectiveness of this approach, a pick-and-
place task experiment was conducted, comparing the proposed incremental mapping 
method with traditional direct mapping teleoperation. Results indicate that the new 
method improves operational efficiency and is more accessible for users of varying 
skill levels. 

Keywords Dual-arm motion mapping · Human-motion based teleoperation ·
Incremental motion mapping · Hand gesture · Hybrid motion mapping 

3.1 Introduction 

Dual-arm robots, compared to single-arm robots, can perform more flexible opera-
tions and are capable of executing more complex tasks through coordinated dual-arm 
actions. However, in pose mapping teleoperation systems that control robotic oper-
ations, the master operator must control the movement of the mechanical arms to 
position the end effector at the target location and manipulate the end effector to 
perform gripping actions. This often requires frequent switching between control 
objects and coordinating both arms to accomplish tasks, presenting a substantial

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 
H. Lyu et al., Human Motion Awareness and Robot Teleoperation, Advanced Topics in 
Science and Technology in China 4, https://doi.org/10.1007/978-981-96-6545-7_3 
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control burden. Ordinary pose mapping strategies struggle to coordinate the rela-
tionship between different actions and generally require the use of additional input 
devices for linked control. Building on the single-arm pose mapping teleoperation 
presented in Chap. 2, this chapter designs a dual-arm pose mapping teleoperation 
method that not only allows flexible switching between operator control and fixture 
control but also supports intuitive mapping control of dual-arm poses. Traditional 
pose mapping teleoperation systems require tedious master–slave absolute coordi-
nate calibration at the start of each mapping, affecting operational efficiency. This 
chapter proposes an incremental pose mapping teleoperation method based on real-
time relative human–robot pose transformation, which not only enhances flexibility 
during the mapping process but also simplifies the pre-calibration process in human– 
robot pose mapping teleoperation. Finally, this chapter sets up a pick-and-place task 
experiment to compare and evaluate the performance of the proposed incremental 
pose mapping teleoperation against direct mapping teleoperation among users of 
different skill levels. 

3.2 Hybrid Mapping Technique of Hand Gesture 
and Upper-Limb Motion 

In this section, to achieve intuitive teleoperation of robots by operators, a hybrid 
human–robot motion mapping teleoperation method based on the coupling of oper-
ator hand gestures and limb movements, GuLiM (Gesture-Upper Limb Motion 
Mapping), is proposed, as shown in Fig. 3.1. Compared to Chap. 2, the wearable 
inertial motion capture device PN used in this chapter consists of 32 IMU nodes, 
including two gloves that capture finger movements, with 7 IMU nodes per hand. The 
operator’s upper limb movements and hand gestures are captured using the wearable 
device and transmitted to the robot end through the designed kinematic mapping 
strategy to control the robot’s arms and end effector. The proposed gesture-mixed 
mapping teleoperation method introduces incremental pose mapping compared to 
traditional direct mapping teleoperation controls. It allows operators to more flex-
ibly intervene in the action transfer process through predefined hand gestures while 
transferring the operator’s upper limb actions to the robot, thus achieving coordi-
nated control over various operational objects during the operator’s dual-arm pose 
mapping teleoperation process.

In the actual process of pose mapping teleoperation, it is crucial to accurately 
convey the operator’s intentions and commands for controlling the movement of the 
robot arm and the actions of the end effector. Specifically, operators need to be able to 
autonomously and intuitively decide when to control the movement of the robot arm 
and when to control the movement of the end effector, without interference between 
the two controls. Therefore, this section predefines various hand gesture rules, as 
shown in Fig. 3.2, for enabling control of the robot arm and the control of the end 
effector.
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Fig. 3.1 Teleoperation architecture based on hand gesture and upper-limb motion, reprinted from 
Lyu et al. [1], Copyright (2025), with permission from IEEE

Fig. 3.2 Hand gesture rule definition for hybrid GuLiM mapping technique, reprinted from Lyu 
et al. [1], Copyright (2025), with permission from IEEE 

To better adapt to human motion habits during object grasping, the following 
rules are set: (1) The bending state of the index finger is used to control the gripper, 
determined by changes in the posture of the fingertip coordinate system relative 
to the hand coordinate system {FhandR} (using the z-component zind of quaternion 
qind = (xind, yind, zind, wind) as the criterion); (2) The bending state of the middle 
finger is used to enable or disable motion control and teleoperation action transfer of 
the robot arm, also determined by changes in the posture between the middle fingertip 
coordinate system and the hand coordinate system {FhandR} (using the z-component 
zmid of quaternion qmid = (xmid, ymid, zmid, wmid) as the criterion). In this section, the
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trigger threshold for gripper control is set at Tzind = 0.2, and the trigger threshold 
for robotic arm control is set at Tzmid = 0.5. The aforementioned gesture definitions 
enhance the coordination and convenience of motion transfer between the operator 
and the robot. 

3.2.1 Incremental Motion Mapping Strategy 

Based on the defined gesture rules, the motion mapping issue between the operator 
and the robot can be described as follows: Given the current motion state of the 
operator (the process amount from the start state to the current state), the robot 
executes corresponding process actions (starting from a corresponding initial state, 
moving through the path to reach the respective sub-goals, and ultimately arriving at 
the designated state). However, due to differences in the kinematic models between 
humans and robots, it is necessary to define master–slave pose mapping rules to 
further map the motion capture data from the operator’s side into the target position 
of the robot arm’s end effector, as shown in Fig. 3.3. 

For position mapping, the hand position data ph = (xh, yh, zh) of the operator is 
mapped to the position pr = (xr, yr, zr) of the end effector. As shown in Fig. 3.3, 
the initial coordinate system {FhandR} of the operator’s right hand does not align with 
the direction of the right gripper’s coordinate system. To map the direction of the 
operator’s hand coordinate system to the end effector, a rotation transformation of 
{FhandR} is used to create a new coordinate system {FhandRM}, which is located at 
the same position as {FhandR} but with a different orientation. Thus, the orientation

Fig. 3.3 Human–robot coordinate transformation in Cartesian space, reprinted from Lyu et al. [1], 
Copyright (2025), with permission from IEEE 
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of {FhandRM} can be directly mapped to the robot’s right arm end effector {Fgripper}. 
Additionally, the default orientation of the coordinate system of the operator’s BVH 
format skeletal local reference system does not align with the traditional Cartesian 
coordinate system. {Fhip} is the local reference system of the BVH skeletal coordinate 
system, where the Y-axis is perpendicular to the horizontal plane, and the Z-axis and 
X-axis are perpendicular to each other and lie in the horizontal plane. To address the 
inconsistency in the definition of coordinate system orientations during the mapping 
process, this section uses the coordinate data (Z, X, Y) from the BVH format skeletal 
local coordinate system to map onto (X, Y, Z) in the robot’s coordinate system. 

The standard DH (Denavit-Hartenberg) model [1] parameters for the single arm 
of the YuMi robot used in this chapter are shown in Table 3.1. In the table, the 
parameters θj, αj, aj, lj and uj respectively represent joint angle, link twist angle, 
link offset, link length, and the lower and upper limits of the joint position, the 
homogeneous transformation matrix for joint j is derived from Eq. (3.1). 

j−1 
j T = 

⎡ 

⎢⎢⎣ 

cθj −cαjsθj sαjsθj ajcθj 
sθj cαjcθj −sαjcθj ajsθj 
0 sαj cαj dj 
0 0 0 1  

⎤ 

⎥⎥⎦ (3.1) 

where sθj and cθj respectively represent sin θj and cos θj, sαj and cαj respectively 
represent sin αj and cos αj. 

The aforementioned standard D-H model parameters define the forward kine-
matics of the YuMi robot’s single arm from the first joint link to the seventh joint 
link. Both the left and right arms of the YuMi robot have the same kinematic configu-
ration. However, the base transformation matrices from the YuMi robot’s main body 
base coordinate system {Fbase} to the base of the first link frame of each arm are 
different, denoted as r0 baseT and

l0 
baseT , respectively. Thus, the forward kinematic trans-

formations for the left and right arms of the YuMi robot can be derived using the 
following formula: 

Tr = r0 baseT ·0 1 T ·1 2 T ·2 3 T ·3 4 T ·4 5 T ·5 6 T ·6 7 T (3.2)

Table 3.1 Standard DH model parameters for single arm of YuMi robot 

j dj θj aj αj lj uj 

1 0 θ1 −30 mm −90° −168.5° 168.5° 

2 0 θ2 30 mm 90° −143.5° 43.5° 

3 251.5 mm θ3 40.5 mm −90° −123.5° 80° 

4 0 θ4 − 90° 40.5 mm −90° −290° 290° 

5 265 mm θ5 + 180° 27 mm −90° −88° 138° 

6 0 θ6 −27 mm 90° −229° 229° 

7 36 mm θ7 0 0 −168.5° 168.5° 
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Tl = l0 baseT ·0 1 T ·1 2 T ·2 3 T ·3 4 T ·4 5 T ·5 6 T ·6 7 T (3.3) 

According to data provided in the ABB official manual, the transformation matrix 
values between the robot base and the first axis of the left and right arms are as follows: 

r0 
baseT = 

⎡ 

⎢⎢⎣ 

0.571 0.107 0.814 135 
0.619 0.707 −0.342 −107 

−0.539 0.700 0.470 462 
0 0 0 1  

⎤ 

⎥⎥⎦ (3.4) 

l0 
baseT = 

⎡ 

⎢⎢⎣ 

0.571 0.107 0.814 135 
−0.619 0.707 0.342 107 
−0.539 −0.699 0.470 462 

0 0 0 1  

⎤ 

⎥⎥⎦ (3.5) 

Based on the kinematic configuration and coordinate transformation analysis 
mentioned above, to accurately and intuitively map the operator’s end actions to 
the robotic arm’s end, this section proposes an incremental pose mapping method, 
as shown in Fig. 3.4. The operator’s hand pose data is typically used to determine 
the required end-effector pose data for controlling the robot. The poses of the robot’s 
end effector, poser , and the operator’s hand pose, poseh, at moment i are defined as 
follows: 

poser(i) = (pr(i), qr(i)) (3.6) 

poseh(i) = (ph(i), qh(i)) (3.7) 

where pr(i), ph(i) respectively refer to the position vectors of the robot’s end effector 
and the operator’s hand, while qr(i), qh(i) respectively denote the orientation vectors 
of the robot’s end effector and the operator’s hand, represented by unit quaternions. 

Fig. 3.4 Schematic diagram of incremental pose mapping strategy, reprinted from Lyu et al. [1], 
Copyright (2025), with permission from IEEE
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When the operator starts moving at time i, the relative position pδ(i) and the relative 
orientation qδ(i) between the operator and the robot are calculated as follows: 

pδ(i) = pr(i) − ph(i) (3.8) 

qδ(i) = qr(i) ⊗ qh(i)−1 (3.9) 

where operator⊗ represents the multiplication of quaternions, and the inverse quater-
nion qh(i)−1 of the unit quaternion qh(i) can be obtained by taking the negation of 
the corresponding components x, y, z of qh(i). 

After obtaining the relative pose at moment i (including the position component 
pδ(i) and the orientation component qδ(i)), the pose data for robot control at moment 
i +n, as determined by the incremental pose mapping strategy, is defined as follows: 

pr(i + n) = ph(i + n) + pδ(i) (3.10) 

qr(i + n) = qδ(i) ⊗ qh(i + n) (3.11) 

where pr(i + n) and qr(i + n) respectively represent the position and orientation of 
the robot’s end effector at moment i + n, while ph(i + n) and qh(i + n) respectively 
represent the position and orientation of the operator’s hand at moment i + n. 

With this, the target motion position for the robot end can be obtained. Based on 
the aforementioned forward kinematics analysis, by inputting the DH parameters into 
the inverse kinematics solver, the target joint positions can be determined for joint 
position control on the robot end. In the actual control process of the YuMi robot, 
this chapter builds on the ROS control framework interface developed in Chap. 2, 
introducing a high-frequency real-time joint position control interface (EGM, Exter-
nally Guided Motion) provided by ABB under option 689-1. The real-time target 
joint positions obtained from the inverse solution are input into the YuMi robot for 
position control. 

3.2.2 Dual-Arm Motion Mapping Method with Gesture 
Recognition 

Based on the proposed incremental pose mapping strategy, operators can transfer 
their movements to the robot at any time and from any initial pose state, without 
the need to adjust their own initial poses to fit the robot’s starting position. During 
teleoperation, due to differences in kinematic configurations, the workspaces of the 
operator and robot are not consistent. Traditional mapping methods adapt workspaces 
by changing the mapping scale parameters between different operators and robots, 
often involving tedious calibration work. The new hybrid mapping method proposed
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in this study, based on operator gestures and limb movements, resolves this issue 
by eliminating the need for calibration steps, significantly reducing the learning cost 
and operational difficulty for operators, and achieving flexible mapping of actions 
between operators and robots. 

Algorithm 3.1 describes the master–slave mapping algorithm logic and process 
steps of the proposed hybrid motion mapping algorithm GuLiM. Based on the prede-
fined hand gesture rules in Sect. 3.2 of this chapter, the operator can freely adjust 
to a comfortable posture before the teleoperation starts. As shown in part (i) of the 
algorithm flow, first obtain the current motion state of the operator and the robot, 
including the operator’s hand gestures, upper limb movements, and the current joint 
space data and end effector pose data of the robot. When a bending signal is detected 
in the operator’s middle finger, calculate the relative pose pδ1 between the robot and 
the operator, as shown in part (ii) of the algorithm flow. When the operator releases 
the middle finger, the motion of the robot arm stops, and the operator can freely 
adjust to a comfortable posture. When the middle finger is bent again, the robotic
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arm can move to transfer the human–robot action mapping and calculate the new 
human–robot relative posture. Continuous adjustment is applicable when the range 
of motion of the operator’s own limbs has reached its limit, but the robot has not 
reached the target point, or the operator wishes to stop the mapping and rest during 
the operation. As shown in part (iii) of the algorithm flow, based on the proposed 
incremental posture mapping strategy, calculate the robot’s target posture for the next 
movement based on the obtained relative posture. Then, enter part (iv) of the algo-
rithm flow, use the trac_ik open-source inverse solution algorithm [2] to calculate 
the robot’s target joint space, transmit it to the robot end controller for joint position 
control, until the robot reaches a suitable grasp position and grasp posture near the 
grasping target. At this point, the operator can bend the index finger to control the 
robot gripper for grasping, as shown in part (v) of the algorithm flow, where the 
opening and closing control of the gripper is an independent program thread in the 
control program, running parallel to the motion control of the robotic arm. 

Figure 3.5 illustrates the intuitive process of the proposed human–robot action 
hybrid mapping method based on gesture data. According to the predefined gesture 
rules described above, the operator freely adjusts their posture in stage (i), followed 
by initiating pose mapping by bending the middle finger. In stage (ii), the relative 
pose is obtained and pose mapping teleoperation is performed based on the proposed 
incremental posture mapping strategy. In stage (iii), the operator’s range of motion 
has reached its maximum limit, but the robot has not reached the target point, or the 
operator finds it inconvenient to operate in the current posture. The operator then 
releases the middle finger, no longer transmitting the motion to the robot, and freely 
adjusts to a suitable posture. Similar to stage (ii), in stage (iv), the operator bends the 
middle finger to continue the motion transmission and calculates a new relative pose 
at the beginning. This process continues until the robot reaches the target point with 
an appropriate grasping posture. In stage (v) and (vi), the operator bends the index 
finger to control the robot’s servo gripper, where the arm control and gripper control 
are independent during the teleoperation process.

Building upon the coupled hand gesture incremental posture mapping strategy, 
the mapping command switching between gripper control and arm motion control 
during single-arm posture mapping teleoperation has been achieved. To further 
implement dual-arm posture mapping, the operator’s left and right arm end position 
data Ph = (xh, yh, zh) is mapped to the position of the YuMi robot’s left and right 
end effectors, denoted asPr = (xr, yr, zr), as shown in Fig. 3.6. Similar to single-arm 
posture mapping, the initial coordinate systems {FhandR} and {FhandL} of the oper-
ator’s right and left hands are not aligned with the coordinate systems {FgripperR} 
and {FgripperL} of the robot’s right and left end effectors. To map the orientation of 
the operator’s hand coordinate systems to the end effectors, new right and left hand 
coordinate systems {FhandRM} and {FhandLM} are created by rotating the original right 
hand coordinate systems {FhandR} and left hand coordinate systems{FhandL}, respec-
tively. These new coordinate systems have the same position as the initial coordinate 
systems but different orientations, aligning them with the orientations of the end 
effectors. This allows for direct implementation of incremental posture mapping
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Fig. 3.5 The process of the GuLiM human–robot motion mapping technique

coordinate transformations during the mapping process. To facilitate flexible coor-
dination between the left and right arms in posture mapping, a gesture-triggering 
rule for hand dominance swapping is designed for dual-arm posture mapping tele-
operation. The bending state of the operator’s right middle finger is used to enable 
or disable the motion control and teleoperation action transmission of the robot’s 
left arm, and similarly, the bending state of the operator’s left middle finger is used 
to enable or disable the motion control and teleoperation action transmission of the 
robot’s right arm. Operators following this rule in dual-arm posture mapping teleop-
eration do not experience erroneous operations due to simultaneous operation of the 
arms and end effectors with the same hand dominance, improving the flexibility and 
reliability of the motion output control.

3.3 Comparison of Incremental Mapping and Direct 
Mapping Method 

To validate the performance of the proposed GuLiM method, this section conducts 
comparative experiments. The Directly Mapping Method (DMM) is chosen as the 
comparative benchmark. The DMM mapping method directly maps the operator’s 
hand posture to the robot’s end effector without considering the relative coordinate 
transformation between the human and the robot during the mapping process. It is the 
most common and simple mapping method used in posture mapping teleoperation. 
The comparative experiment involves both an experienced operator familiar with the 
system and a novice operator who has never used the teleoperation system before. The
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Fig. 3.6 Dual-arm human–robot coordinate transformation in Cartesian space

experimental task involves a common human task of grasping and placing blocks, 
requiring the operator to grasp a block from one location and place it at a specific 
position or orientation. To comprehensively evaluate the teleoperation control perfor-
mance, this section proposes evaluation metrics based on task placement accuracy 
and time cost, and analyzes the experimental results. 

3.3.1 Analysis of a Grasp Task Using Incremental Motion 
Mapping 

A typical operation process for picking up and placing based on the proposed hybrid 
mapping method is shown in Fig. 3.7. The operator stands beside the robot and starts 
from a suitable operating posture, bending the middle finger to enable the human– 
robot motion mapping. Then, the operator moves and controls the end effector to 
approach the block. However, during this process, the position of the block in the 
operator’s hand movement space (the position of the end effector) has exceeded the 
limit of the operator’s range of motion, making it impossible to control the robot’s end 
effector to reach the position of the block. The proposed hybrid mapping method can 
effectively solve this problem. The operator releases the middle finger at this time, and 
the human–robot motion mapping is no longer performed. Then, the operator retracts 
the arm and adjusts to a position and posture where movement can be continued. After 
that, bending the middle finger re-enables the human–robot motion mapping, until 
the end effector reaches the target position, and then bending the index finger controls 
the opening and closing of the gripper to pick up the target block. Similarly, during 
the placement process, the operator finds it difficult to adjust the arm movements of
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Fig. 3.7 Frame flowchart of grasping using GuLiM method, reprinted from Lyu et al. [1], Copyright 
(2025), with permission from IEEE 

the robot again at t = 22 s. At this moment, the operator releases the middle finger, 
and the human–robot motion mapping ceases. The operator then retracts the arm at 
t = 24 s to a suitable position for continued operation. Subsequently, by bending the 
middle finger, the human–robot motion mapping is reactivated at t = 25 s, continuing 
until the end effector reaches the target position at t = 34 s, and the gripper is opened 
to release the block at t = 35 s. 

Figure 3.8 shows the recorded motion signals of the operator and the robot during 
the experimental operation process corresponding to the GuLiM mapping teleoper-
ation in Fig. 3.7. The bending signals of the index finger and middle finger of the 
operator are shown in the upper subgraph of Fig. 3.8. The bending signal of the index 
finger is used to control the end effector of the robot, while the bending signal of the 
middle finger is used to enable the transmission of motion commands between the 
human and the robot. These two finger bending gesture signals are independent of 
each other and triggered based on the previously mentioned bending state thresholds. 
In addition, the hand position data of the operator and the end effector position data of 
the robot are also recorded, as shown in the middle and lower subgraphs of Fig. 3.8. 
Before time t1 in Fig. 3.8, as  zmid < Tzmid, the robot’s motion control was not enabled, 
and the robot remained stationary. During the time interval [t1, t2], the operator bent 
the middle finger to zmid > Tzmid, enabling the transmission of motion commands and 
mapping the hand motion data to the robot end effector using the incremental posture 
mapping strategy. At time t2, the operator’s upper limb has reached the limit of the 
motion space, based on the hand gesture mixed incremental posture mapping strategy 
proposed in this section, the operator relaxed the middle finger at time t2 to stop the 
robot’s motion control and teleoperation mapping, during the time interval [t2, t3], 
the robot remained stationary, and the operator could freely adjust the position of the 
hand without changing the robot’s motion state, reaching a posture with convenient 
operation and redundant motion space. the operator completed the pose adjustment 
at time t3, and then bent the middle finger again to zmid > Tzmid, re-enabling the 
teleoperation control of the robot, transmitting the operator’s hand relative motion 
state. This process continues until the manipulator reaches the appropriate grasping 
target point under the operator’s teleoperation control. At this point, the operator
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Fig. 3.8 The motion data curves in the GuLiM process, reprinted from Lyu et al. [1], Copyright 
(2025), with permission from IEEE 

bends the thumb to zind < Tzind opening the end effector of the manipulator and 
performing the grasping task. 

3.3.2 Definition of the Evaluation Metrics and Experimental 
Setup 

In this study, the traditional DMM (Directly Mapping Method) was selected as 
the experimental benchmark to compare the performance of the proposed hybrid 
mapping method. Two sets of experiments for picking up and placing blocks were 
conducted to validate the practical performance of the hybrid mapping method. 
During the experiments, the operators were required to pick up blocks from region 
A, as shown in Fig. 3.9, and place them into one of the target regions, namely regions 
B, C, and D.

To evaluate the grasping performance of the proposed method in this chapter, 
a grasping performance evaluation metric is proposed in two sets of experiments. 
It consists of two main parts: the precision of placement (Smp, m = 1, 2) and the 
operation time to complete the task, where m denotes the mth group of experiments. 
This section uses S1p to represent the placement precision performance score of the 
first group of experiments and S2p to represent the placement precision performance 
score of the second group of experiments.
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(a) (b) 

(c) 

Fig. 3.9 Experimental setup and illustration of accuracy evaluation, reprinted from Lyu et al. [1], 
Copyright (2025), with permission from IEEE. a Pick-and-place experiment setup. b Position 
accuracy evaluation setup. c Orientation setup

In the first group of experiments, as shown in Fig. 3.9b, each target area was divided 
into a pair of concentric rings as scoring rings. Each ring corresponds to a level of 
evaluation score, where a larger diameter corresponds to a further outward deviation 
of the placement point, resulting in a lower score, the score range is set from 1 to 
6. For the target areas B, C, and D, five pick-and-place experiments were conducted 
for each. In the second group, as shown in Fig. 3.9c, the operator placed the block 
into the target region with a specified angle θ(θ = [30◦, 60◦, 90◦]). Six sector areas 
were divided based on the angle deviation with scoring Sdev 

2p ranged from 1 to 6. The 
scoring areas were symmetrically distributed on the left and right sides of the datum 
line, and the area with a larger deviation would lead to a lower score. Besides, the 
position precision of placement was also considered with four scoring levels ranging 
from 1 to 4. This part of the score was based on the ratio (α = Aoverlap

/
Asquare) of  

the overlapping area Aoverlap between the block and the baseline square, to the area of 
the baseline square Asquare. The final score of the placement precision of the second 
group S2p was calculated with the scoring rules depicted below in (3.12). 

S2p = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

Sdev 
2p × 0 0  < α  ≤ 1 3 
Sdev 
2p × 1 1 

3 < α  ≤ 1 2 
Sdev 
2p × 2 1 

2 < α  ≤ 2 3 
Sdev 
2p × 3 2 

3 < α  ≤ 1 

(3.12) 

The final score is calculated by multiplying the two parts of the score as described 
above. Unlike the first set of experiments, this set mainly focuses on the accuracy
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of the placement direction. Therefore, only one target area (area B) was selected, 
but three different placement directions (θ = [30◦, 60◦, 90◦]) were chosen. For each 
angle, five pick-and-place trials were conducted. 

During the experiments, as described above, the placement accuracy scores of 
the two groups of experiments were recorded. The evaluation of operational effi-
ciency in completing teleoperation tasks directly recorded the time consumed for 
each task (unit: seconds) and conducted analysis and comparison. To assess the user-
friendliness of the proposed GuLiM intuitive mapping method for novice operators, 
each group of experiments (including the placement accuracy evaluation experiment 
and the placement posture accuracy evaluation experiment) was completed by the 
aforementioned experienced operator and novice operator for subsequent comparison 
and analysis. 

3.3.3 Placement Accuracy Evaluation for Grasp Task 

The results of the first group of experiments used to evaluate the placement accu-
racy are shown in Fig. 3.10a, where P1 and P2 represent two operators involved in 
the experiments. P1 is well-trained and familiar with the operating system, while 
P2 is a novice who encounters this teleoperation system for the first time. From 
the experimental results, it can be seen that the proposed GuLiM mixed intuitive 
mapping method outperforms the traditional DMM direct mapping method in terms 
of placement accuracy scores. Additionally, the GuLiM method has a smaller stan-
dard deviation in scores compared to the DMM method, indicating its robustness. 
Specifically, in the grabbing and placing tasks from area A to D, GuLiM significantly 
outperforms DMM in placement accuracy scores, as the grabbing and placing oper-
ations between area A and D are the largest distance tasks among the three. When 
using DMM, the larger operating distance may cause the operator’s hand to reach the 
limit of their own body’s motion space, making it difficult for the operator to place 
the grasped object at the target position. On the other hand, in the simpler tasks of the 
first group of experiments, DMM is more efficient than the GuLiM method. This is 
because the DMM method does not require an adjustment process compared to the 
GuLiM method, saving time during the adjustment process, which is also reasonable. 
In the second group of experiments, according to the task design mentioned earlier, 
the object was grabbed and placed at a specified angle θ(θ = [30◦, 60◦, 90◦]), and 
the S2p score was calculated according to the scoring rules. As shown in Fig. 3.10b, in 
all experiments evaluating placement posture accuracy, the scores using the GuLiM 
intuitive mapping method were superior to those using DMM.

Figure 3.11 summarizes the improvement percentage of precision and time cost of 
GuLiM compared with DMM. According to the statistical results, as shown in the left 
diagram of Fig. 3.11, the GuLiM surpassed DMM by 46.77% in terms of placement 
precision averagely, whereas it took 19.60% more time on average to accomplish 
the tasks. For novice operator P2, the GuLiM method has a larger improvement in 
placement precision than the DMM method compared with the experienced operator.
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(a) (b) 

Fig. 3.10 Placement accuracy and time consumption for different operators. a Results of position 
accuracy evaluation. b Results of orientation accuracy evaluation

As shown in the right diagram of Fig. 3.11, in the evaluation of pose placement 
accuracy experiment, the S2p score of the GuLiM surpassed that of the DMM by 
69.27% but took 30.54% more time on average for orientation transfer. 

From the above experimental results, it is well-reasoned to say that the proposed 
GuLiM method is capable of accomplishing tasks with more complicated opera-
tions. Besides, the GuLiM method takes a main advantage on the placement preci-
sion. However, the average time of the GuLiM method is slightly increased than the 
DMM method. Reviewing the mixed pose mapping teleoperation process with hand 
gestures and upper limb motions shown in Figs. 3.7 and 3.8, the reason why using 
the GuLiM method leads to an increase in time cost is that this method requires the 
operator to make necessary adjustments in hand gestures and body posture during 
the teleoperation grasping and placing tasks, which adds additional time cost. An 
average of two adjustments are required in the position transfer assessment tasks 
(AB, AC, and AD), while an average of three adjustments are required in the orienta-
tion transfer assessment tasks (θ = [30◦, 60◦, 90◦]). Therefore, the average time of 
the GuLiM method is slightly increased due to the adjustment procedure. However, 
the GuLiM method does not require complicated setup and calibration procedures

Fig. 3.11 Comparison of the GuLiM and DMM in task accuracy and efficiency 
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before an operational task, which saves the pre-training time of the operators and 
improves its usability and generalizability in practical application scenarios. 

3.4 Summary 

The intuitiveness and convenience of teleoperation systems are key in the practical 
application of robot teleoperation systems. Designing user-friendly and efficient tele-
operation strategies for users unfamiliar with robot operations has always been a 
significant challenge in the promotion of teleoperation technology. Building upon 
the implementation of single-arm posture mapping teleoperation by capturing oper-
ator upper limb movements, this chapter proposes a GuLiM dual-arm human–robot 
posture mapping method based on coupling hand gestures and upper limb move-
ments. This method effectively leverages the subjective intervention ability of the 
master operator during the teleoperation process, improves the intuitiveness of dual-
arm robot posture mapping teleoperation, and significantly reduces the training and 
learning costs for the master operator. Additionally, an incremental posture mapping 
strategy is proposed, which not only make full use of the robot arm’s workspace 
but also simplifies the pre-calibration process in human–robot posture mapping 
teleoperation, enhancing the convenience of the posture mapping process. Further-
more, a comparative experiment is conducted to evaluate the performance differences 
between the GuLiM mapping method proposed in this chapter and the traditional 
direct mapping method DMM in grasping and placing actions. The main conclusions 
of this chapter are as follows: 

(1) A proposed incremental posture mapping strategy is introduced, which applies 
real-time calculation of the relative pose transformation between the robot and 
the operator to the kinematic solution of the target pose. This strategy achieves 
the mapping and coordinate transformation of human–robot equivalent postures 
in Cartesian space, eliminating the cumbersome initialization and calibration 
process in traditional teleoperation. It also allows for flexible adjustment of 
the operator’s own limb posture during teleoperation, addressing the limita-
tion of the operator’s motion range in the master–slave heterogeneous human– 
robot posture mapping operation. This strategy improves the convenience and 
intuitiveness of human–robot posture mapping teleoperation. 

(2) Building on the design of the incremental posture mapping strategy, this chapter 
proposes the GuLiM posture mapping method based on a mix of operator hand 
gestures and limb movements. This method allows for more flexible inter-
vention in the motion transmission process by incorporating predefined hand 
gestures while transferring the operator’s upper limb movements to the robot. 
This enables coordinated operation control between the robotic arm and the end 
effector during posture mapping teleoperation. By designing gesture-triggering 
rules that swap hand dominance, the method achieves dual-arm posture mapping
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teleoperation, further ensuring the reliability and flexibility of the output of the 
dual-arm teleoperation control. 

(3) The experiment designed for grasping and placing tasks quantitatively eval-
uates the performance of GuLiM posture mapping method compared to the 
traditional DMM direct mapping method, focusing on placement accuracy and 
operational efficiency. The results shows that the GuLiM method improved 
placement accuracy by 46.77% in position placement and 69.27% in posture 
placement compared to the DMM method. However, the GuLiM method 
takes 19.60% longer for position placement evaluation and 30.54% longer 
for posture placement evaluation compared to the DMM method. The GuLiM 
method demonstrates significant advantages in placement accuracy, although 
it slightly increases the average time for operators to complete tasks. Further-
more, comparing the performance of proficient operators and novices, the results 
shows that the proposed GuLiM mapping method can help novice operators 
improve position and posture placement accuracy during teleoperation. 
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Chapter 4 
Whole-Body Human-Motion Based 
Robot Teleoperation 

Abstract This chapter addresses the challenge of teleoperation for robots designed 
for highly dynamic tasks, such as homecare or medical assistance, which often 
include not only robotic arms but also mobile chassis and redundant body motion 
mechanisms (e.g., humanoid torsos and wheeled chassis). The primary challenge 
in pose mapping teleoperation is extending control beyond the arm to include the 
robot’s mobile chassis and other body motions. To meet these needs, the chapter 
proposes a dynamic gesture trajectory recognition method that captures the oper-
ator’s body movements, allowing control of the robot’s mobile chassis and torso 
motions. The corresponding gesture mapping strategy is designed for the robot’s 
mobile control to verify the method through functional tests on an integrated nursing 
assistant robot platform. Additionally, a humanoid dual-arm robot with redundant 
torso degrees of freedom is used, with the operator’s torso and lower limb move-
ments captured to enable whole-body cooperative teleoperation control. The system 
is then validated in two key healthcare scenarios: remote homecare (Healthcare 4.0) 
and telemedicine assistance. This approach demonstrates how the proposed teleop-
eration system can enhance robot control flexibility and effectiveness in real-world 
healthcare applications. 

Keywords Whole-body motion mapping · Gesture recognition · Mobile 
manipulation · Robot torso · Redundant DoFs 

4.1 Introduction 

In addition to the robotic arm actuator, which is responsible for the execution of the 
operation task, robots that perform such highly dynamic and strong environmental 
interaction tasks like homecare or medical assistance generally have a mobile chassis 
and other redundant degrees of freedom proprioceptive motion mechanisms to control 
the movement of the robot and the adjustment of the robotic arm’s workspace, and 
most of them are designed with humanoid torso mechanisms and wheeled mobile 
chassis [1, 2]. When the pose mapping control of the robot arm is completed, in
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the process of landing the pose mapping teleoperation application, the key problem 
is to utilize the operator’s body movements to achieve other robot proprioceptive 
motions except the robot arm actuator. In this chapter, a dynamic gesture trajectory 
recognition method of the operator’s terminal was proposed to meet the teleoperation 
control requirements of the mobile chassis of such a nursing assistant robot and 
the redundant body motion mechanism like the human torso. The corresponding 
gesture mapping strategy was designed for the robot’s mobile control, and functional 
verification were carried out on an integrated design nursing assistant robot platform. 
In addition, a humanoid dual-arm robot with redundant torso degrees of freedom 
was integrated, and the corresponding torso pose mapping strategy was designed by 
capturing the operator’s torso motion and lower limb motion to realize whole-body 
cooperative teleoperation control. Finally, for the two typical application scenarios of 
Healthcare 4.0 remote homecare and telemedicine assistance, the developed posture 
mapping teleoperation system was verified and applied based on the self-built nursing 
assistance robot platform. 

4.2 Human-Motion Based Teleoperation of Robot Mobile 
Chassis 

Human gesture is an important way for human to express their intentions to the 
outside world. Therefore, gesture recognition technology provides a feasible solu-
tion for convenient human–computer interaction [3]. Most current gesture recogni-
tion systems rely on complex external equipment, such as indoor optical 3D motion 
capture systems [5] and other fixed visual capture solutions [4]. In this section, a 
lightweight wearable wrist camera was designed for the convenience requirements 
of human–computer interaction. By analyzing the real-time image background data 
of the wrist camera, the motion data of the background feature points in the process 
of the operator’s gesture is extracted, and the motion trajectory of the operator is 
calculated backward. The block diagram of the human–computer interaction process 
based on dynamic gesture trajectory recognition is shown in Fig. 4.1. In this section, 
a series of gesture instructions were designed and developed for the mobile interac-
tion requirements of nursing assistant robots, and the classification and recognition of 
corresponding gesture instructions are realized based on the K-nearest neighbor algo-
rithm. At the same time, a trajectory recognition experiment was designed to verify 
the performance of the gesture recognition system, and the teleoperation function of 
the mobile nursing robot’s motion control was also tested.
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Fig. 4.1 Block diagram of the HRI system based dynamic gesture recognition 

4.2.1 Dynamic Gesture Trajectory Recognition 

4.2.1.1 Hardware Structure Design of Wearable Wrist Camera 

In order to achieve the recognition of the continuous dynamic gesture trajectory of 
the operator, a wearable wrist camera was designed in this section, and the hardware 
structure is shown in Fig. 4.2. Based on 3D design software, we designed lightweight 
and foldable rotating shaft structure for the device, which can be easily stored and 
carried around, as shown in Fig. 4.2a. The base, housing, and camera cover of the 
wearable wrist camera are 3D printed in nylon material (housing thickness is 1 mm), 
and the overall weight of the wearable wrist camera is low (the final prototype device 
weighs 114 g). The foldable structure of the camera makes the overall structure 
compact, while the base and elastic wearable wristband are bonded by hot melt glue. 
In addition, the pull-out structure design between the shell and the base makes it 
convenient for users to disassemble and carry. The overall dimensions of the designed 
wearable wrist camera are shown in Fig. 4.2a. The camera module is fixed in the 
camera housing, which is hinged between the main housing by a rotating shaft and 
can be flipped from 0° to 150°. In normal gesture recognition, the reversal Angle is 
set to 80◦, which can be folded and stored in non-working state.

The functional hardware composition and prototype of the above wearable wrist 
camera are shown in Fig. 4.2b. The camera sensor selected is a USB camera module 
compatible with the Raspberry PI, which is a CMOS 175◦ wide-angle camera with 
a resolution of 5 megapixels (2952 × 1944 pixels). Raspberry PI Zero W is selected 
as the controller, which integrates a single-core central processing unit (CPU) at 1
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(a) 

(b) 

Fig. 4.2 Structure and hardware composition of the wearable wrist camera, reprinted from Ref. 
[6], CC BY 4.0. a The hardware composition of the wearable wrist camera. b Design of wearable 
wrist camera prototype

Ghz and 512 MB of RAM, and supports 802.11 b/g/n wireless LAN connection. 
The controller module is small (65 mm × 30 mm × 5 mm) and has a higher clock 
frequency compared with other microcontroller modules such as Arduino, making it 
suitable for high-speed image acquisition and transmission. The USB camera module 
and the Raspberry Pi controller are connected by a flexible flat cable. According to the 
power requirements and the size constraints of the integrated design, two rechargeable 
Li-ion batteries with a rated voltage of 3.7 V are selected for parallel output, with a 
total capacity of 2000 mAh. Meanwhile, in order to satisfy the power requirements of 
the Raspberry Pi and the camera module, a boost module is used to obtain a voltage 
output of 5 V. 

The acquisition of the image-video streaming data is achieved employing a Python 
program script running on a Raspberry Pi Raspbian system (a Debian GNU/Linux-
based Raspberry Pi hardware development system). Firstly, a TCP connection to the 
host computer is established. After successfully connected, the Raspberry PI collects 
video image data from the camera module and transmits it to the host computer in real-
time. In order to meet the processing requirements of the algorithm, the transmitted 
image quality is 320 × 240 pixel resolution, and the transmission speed is set to
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12 FPS. Secondly, in terms of the power consumption of the whole machine, the 
operating current is 0.21 A in the video transmission state and 0.11 A in the boot 
state without data transmission. Finally, according to the battery capacity and the 
actual use test, the device can work continuously for more than four hours to meet 
the use requirements in common human–computer interaction scenarios. 

4.2.1.2 Process Design of Dynamic Trajectory Gesture Recognition 
Algorithm 

After the original image data is obtained by the host computer, the data is first decoded 
and converted, and then processed by the subsequent recognition algorithm. When 
the operator makes gestures with the wrist camera, the user’s hand is in the middle 
of the picture will be captured by the camera. Compared with the change range of 
the overall picture, the change characteristics of the picture are more obvious in 
the background picture around the user’s hand. Therefore, the feature change of the 
background in the picture can be selected to infer the operator’s hand movement, 
so as to indirectly reflect the actual movement trajectory of the operator’s hand. In 
addition, in order to distinguish valid gesture trajectories from other invalid gestures 
during the continuous motion of the operator, this paper designed a method to segment 
gestures by detecting the swing of the operator’s hand. The operator bends his wrist 
and swings it toward the bottom of the camera screen before making a valid gesture. 
Then, the algorithm detects the height change of the hand region in the image to 
segment the gesture interval. Due to the difference in hand size between operators, 
the operator needs to ensure that the hand disappears from the screen when the wrist 
is bent. After obtaining the effective gesture data, the gesture recognition results are 
obtained by classifying the gestures based on DTW similarity matching algorithm. 

As  shown in Fig.  4.3, the algorithm flow scheme showed how to realize continuous 
dynamic gesture trajectory recognition, which is mainly divided into the following 
four steps; (1) hand region segmentation to obtain the height features of the hand; 
(2) background speed calculation, which can be obtained by matching background 
feature points between successive frames; (3) continuous gesture segmentation, 
achieved by detecting changes in the height of the hand area caused by bending 
the wrist; (4) data normalization and cross-validation classification, which can test 
the recognition accuracy to evaluate the performance of the system.

(1) Hand region segmentation: 

As mentioned above, in the process of continuous gesture recognition, the motion 
of the operator’s wrist swing is recognized through the height change of the hand 
area in the image, thus triggering one gesture track recognition. In addition, when 
calculating the speed of the background feature, the foreground area of the hand 
should be removed, leaving only the background part for feature point matching. 
Therefore, the recognition and segmentation of the hand region is the key to the 
algorithm framework.
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Fig. 4.3 Process of dynamic gesture trajectory recognition algorithm, reprinted from Ref. [6], CC 
BY 4.0

In order to improve the image processing efficiency and recognition speed of 
the algorithm, the original image is first downsampled from 240 × 320 pixels to 
72 × 96 pixels. The wearable wrist camera designed in this book uses a wide-
angle camera module, so the original image acquired by the camera has wide-angle 
distortion, as shown in Fig. 4.4a. The wide-angle distortion is generally corrected by 
the corresponding correction algorithm [7]. However, in this study, the background 
screen outside the hand area in the image is important raw data for speed calculation. 
To avoid feature point correction errors, here does not apply the commonly used 
wide-angle distortion correction algorithm but uses the pixel clipping method to 
remove the four corners with serious distortion in the image, and cuts the image 
pixels to 54 × 73 pixels, as shown in Fig. 4.4b. To further improve the performance 
of the algorithm for subsequent processing, the RGB image is converted to L*a*b* 
color space image as shown in Fig. 4.4c. Then, Simple Linear Iterative Clustering 
(SLIC) algorithm [8] is used to generate compact and nearly uniform super-pixel 
images, as shown in Fig. 4.4d, to further reduce the computational cost of hand 
region segmentation.

After the pre-processing of the image in Fig. 4.4a–d, this book used the Lazy 
Snapping algorithm [9] to separate the foreground and background of the hand area. 
Lazy Snapping is an interactive image segmentation algorithm that segments the fore-
ground and background of an image based on specified seed pixels. In the footage 
captured by a wearable wrist camera, the middle hand region foreground is clearly 
distinguished from the rest of the ambient background region, and hence it is suit-
able to segment the video image sequence by giving initial foreground and back-
ground seed pixels. Here, the initial seed pixels are given in Fig. 4.4e, the green 
area is the initial foreground seed of 8 × 13 pixels Sfore(0), and the blue area is the 
initial background seed of 42 × 47 pixels Sback (0). Further, in the successive image 
processing process, by giving the foreground seed Sfore(i − 1) and the background 
seed Sback (i − 1) of the previous frame, the hand region segmentation result Rhand (i) 
of the current i frame can be obtained, that is, the white area and its internal area 
in Fig. 4.4f. The values of Sfore(i − 1) and Sback (i − 1) are jointly determined by 
the values of Rhand (i − 1), Sfore(0) and Sback (0): the foreground seed pixel Sfore(i) is
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(a) (b) (c) 

(d) (e) (f) 

Fig. 4.4 Algorithmic processing flow of hand region segmentation, reprinted from Ref. [6], CC 
BY 4.0. a Original image and element composition. b Pixel cropped image. c L * a * b* color space 
image. d Superpixel image. e Initial seed pixels. f Hand area segmentation

obtained by merging the eroded regions of the Sfore(0) and Rhand (i) pixels and is used 
for the gesture segmentation in the next frame, that is, the green area in Fig. 4.4f; the 
background seed pixel Sback (i) is obtained and used in the next gesture segmentation 
by combining the corrupted regions of and Sback (0)Rhand (i) pixels, namely the blue 
area in Fig. 4.4f. By analogy, the hand region segmentation in the whole dynamic 
trajectory image video stream can be accomplished through iteration. After obtaining 
the segmentation result of the hand region in each frame, one can be used for the 
background speed calculation, and the other can be used to calculate the hand height 
H (i) in the current frame through the highest pixel point of the hand area, which 
can be used for judging the wrist swing action and the subsequent successive gesture 
segmentation processing. 

As shown in Algorithm 4.1, in order to further reduce the impact of segmentation 
errors, Rhand (i) was eroded inward by Rows/8 pixels to remove the noise, where 
Rows = 54 is the height of the pixel after the cropping process and the result of the 
erosion is Rehand (i) as shown in the red area of Fig. 4.4f. If the area of Rehand (i) is 
0, the height H (i) is equal to the height of Rhand (i); if the area of Rehand (i) is not 0, 
the height is equal to the height of Rehand (i) plus the distance of the erosion Rows/8. 
Finally, the calculated height was passed through a mean filter to obtain the final 
output height H (i).
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(2) Calculate the background speed: 

In this book, the operator’s gesture trajectory is calculated with the background 
speed characteristics of the wearable wrist camera. After completing the above hand 
region segmentation steps the problem is to obtain the background speed in the 
image. The calculation of background speed depends on the selection of reference 
points. In this book, the Speeded Up Robust Features (SURF) algorithm was used 
to select background reference points [10], and the background speed is calculated 
by the average displacement of SURF feature points matched between two adjacent 
frames of images. The algorithm can detect the local extremum points of the second 
derivative of the image at different scales from the image, and then describe the 
characteristics of these points with gradient histogram. Such feature points have 
excellent properties such as robustness, scale invariance, and rotation invariance. 

The specific algorithm process is as follows: First, SURF feature points of two 
adjacent frames of images are extracted, and remove feature points in the foreground 
hand region according to the segmentation results of the hand region, while only 
feature points in the environmental background are retained. As shown in Fig. 4.5a 
and b, the green + symbol and the red dot symbol are the feature points extracted in 
the two neighboring image frames, respectively. After that, the Euclidean distance 
between the feature points of the current frame and the feature points of the previous 
frame are calculated refer to Loweet et al.’s method in the literature [11]. The feature 
points in the two adjacent frames are matched according to the principle of minimum 
distance (for a feature point, the feature point with the smallest distance in the other 
frame is taken as its matching feature point).

After obtaining the matching feature points between two adjacent frames, the 
velocity vector can be calculated based on the pixel displacement of the feature 
points, and the velocity vector of each feature point is shown by the yellow arrow 
annotation in Fig. 4.5c. Further, the velocity components Vx and Vy of each feature 
point in the horizontal and vertical directions of the picture are calculated. Some 
feature points located at the edge of the image may have matching errors, resulting
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(a) (b) 

(c) (d) 

Fig. 4.5 Calculation of the background velocity of the key points, reprinted from Ref. [6], CC BY 
4.0. a Keypoints in the previous frame. b Keypoints in the current frame. c Keypoints matching and 
velocity vector calculation. d Calculation of the effective background speed for the current frame

in excessively large or small velocity values. In this book, the feature points with the 
largest 20% and smallest 20% of the velocity values of Vx and Vy are regarded as 
invalid values, as shown in the pink circle symbols in Fig. 4.5d, and the remaining 
other valid values are shown by the blue circle symbols in Fig. 4.5d. Further, the 
average of the velocity values of effective feature points of the current frame is 
calculated as the background speed of the current frame, as shown in Fig. 4.5d. 

(3) Segmentation of continuous gesture trajectory: 

After obtaining the background velocity by the above method, the next problem to 
be solved is how to segment the valid gestures from the continuous dynamic gesture 
trajectories. In order to distinguish effective and ineffective gestures in continuous 
motion, the following rules were defined in this book to identify the beginning and end 
of effective gestures: The user should bend and swing the wrist downward before 
starting the gesture, and maintain a static state for more than half a second after 
the completion of the gesture. In the process of algorithm debugging, totally 1000
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gesture trajectories were collected from five subjects, and the 1000 gesture trajec-
tories were saved as a dataset for the test of segmentation effective gestures. The 
specific gesture segmentation process is implemented as follows: Due to the incon-
sistent movement habits of different operators, it is impossible to remain completely 
stationary when stationary movements are required. Therefore, in this section, the 
maximum stationary speed threshold A was set to make a judgment. If the average 
value of the background velocity of 6 consecutive image frames (0.5 s) is less than 
Vt , the operator is considered to be stationary at the moment of the current last 
frame. In order to determine the optimal value of the maximum stationary velocity 
threshold Vt for continuous gesture segmentation, the segmentation accuracy test 
was performed on the collected 1000 gesture dataset using different values of Vt . 
The experimental results are shown in Table 4.1. The results show that the optimal 
segmentation accuracy can be obtained when Vt = 3(pixels/frame). 

In order to explain the segmentation process of continuous gesture trajectory more 
intuitively, the algorithm flow chart of triangular trajectory segmentation is inter-
preted as an example here, as shown in Fig. 4.6. Based on the segmentation results 
of the previous hand region segmentation steps, the change of the real-time hand 
region height H (i) which represents the amplitude of wrist swing can be obtained. 
Meanwhile, the real-time velocity change of the operator’s gesture trajectory, i.e., 
the velocity components in two directions Vx and Vy, can be obtained through SURF 
feature point matching. According to the definition of the aforementioned contin-
uous gesture segmentation rule, when the operator makes a wrist swing action, the 
operator’s hand height H (i) in the screen will have continuous falling and rising 
edges, as shown in S1 stage of Fig. 4.6. Accordingly, it is assumed that the operator 
will start an effective gesture movement in the following time interval 1 (indicated 
by the green interval). In interval 1, if it cannot be recognized as a stationary state, it 
is considered that the operator’s effective gesture starts, as shown in interval 2 (pink 
interval marking) in Fig. 4.6. The operator’s stationary state is allowed between 
the operator’s wrist swing after the S1 phase and the beginning of the S3 phase 
of the effective gesture trajectory, as shown in phase S2 in Fig. 4.6. In this book, 
the time window width of the effective gesture trajectory monitoring is set to 2 s. 
If the stationary interval S2 after the operator swings his wrist is longer than the 
time window width of the effective gesture trajectory monitoring, the recognition of 
the trajectory gesture will not be started and the monitoring of the wrist swing will 
be restarted, that is, the gesture two seconds after the wrist swing finished will be 
regarded as an invalid gesture track. The S3, S4, and S5 phases in the figure corre-
spond to the three linear trajectories of the triangular gesture trajectory, respectively. 
In general, after the end of the valid gesture trajectory, the continuous stationary 
state lasting for one second and more than one second in the S6 stage will be judged

Table 4.1 Segmentation accuracies under different thresholds Vt 

Vt (pixels/frame) 1 2 3 4 5 

Segmentation accuracy (%) 83.1 97.1 99.2 98.3 97.8 
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as the end of the gesture recognition. After the start of the valid gesture trajectory, 
the stationary state lasting for less than one second will not be judged as the end 
of the valid gesture. So far the effective gesture trajectory segmentation in a contin-
uous gesture trajectory has been completed, and an independent effective gesture 
trajectory can be obtained for subsequent gesture trajectory recognition. 

(4) Gesture track recognition: 

After obtaining the velocity time series data of a single valid gesture trajectory, the 
data needs to be classified and recognized to facilitate the interface design for subse-
quent human–computer interaction. Since the actions of different operators have 
different durations and moving speeds, the background velocity component sequence 
data [Vgx(i)] and [Vgy(i)] of the X-direction and Y-direction of the gesture trajectory 
g were normalized by linear interpolation and resampling before classifying the 
gesture trajectories, so as to reduce the influence of the differences between different 
experimenters. Here, the number of normalized sampling points was set to 30, and 
the two sequence data after normalization were obtained as [Fgx(i)] and [Fgy(i)]. The  
normalized background velocity sequence data in X and Y directions were combined 

as Fg =
[
Fgx(i) 
Fgy(i)

]
. The dynamic time planning algorithm (DTW) [12] was used to 

calculate the difference between it and all predefined gesture template trajectory 
velocity vectors, and the gesture category with the smallest difference (the smallest 
DTW distance) was selected as the final recognition result. The recognition formula 
for gesture trajectory category G is as follows: 

G = argmin 
G 

(DTW(Fg, FTG)) (4.1)

Fig. 4.6 Schematic diagram of the continuous gesture trajectory segmentation, reprinted from Ref. 
[6], CC BY 4.0 
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where Fg is the velocity sequence data of the input gesture g and FTG is the velocity 
sequence data of the template gesture of category G. 

4.2.2 Hand Gesture Recognition for Robot Mobile Chassis 
Control 

According to the motion characteristics of the omnidirectional mobile robot in two-
dimensional space, six motion modes of the omnidirectional mobile robot were firstly 
defined: forward motion, backward motion, left translation motion, right transla-
tion motion, clockwise rotation, and counterclockwise rotation. The above six basic 
motion modes can accomplish the flexible omnidirectional motion of the mobile 
robot [6]. 

In order to interact with the mobile robot using the recognition results of the 
dynamic trajectory of the gestures, this book defined 10 corresponding dynamic 
trajectory gestures for the motion control of the mobile robot, as shown in Fig. 4.7. 
The first six of them (gestures ➀–➅) were used for the six basic motion modes 
mentioned above. In addition, gestures ➆ and ➇ were defined for speeding up and 
slowing down, respectively. Gesture ➉ was defined for stopping the motion of the 
mobile robot. Generally speaking, mobile robots used in complex auxiliary operation 
scenarios need to be equipped with mechanical arms or other actuators to complete 
the corresponding task operations. In order to realize the control priority switching 
between the mobile robot and its equipped actuator, gesture ➈ was defined to achieve 
the switching of the control subject, thus completing the specified task smoothly. 

Fig. 4.7 Ten predefined gesture commands for mobile robot control, reprinted from Ref. [6], CC 
BY 4.0
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4.2.2.1 Experimental Design and Performance Analysis of Dynamic 
Gesture Trajectory Recognition 

In order to test the performance of the designed dynamic gesture trajectory recogni-
tion system, five subjects (including four males and one female in good health, aged 
between 20 and 30 years old) were selected as experimental subjects in this section. 
During the experiment, the five subjects completed gestures ➀–➉ as a set of gesture 
combinations according to the aforementioned predefined 10 gestures consecutively. 
Each subject repeated the above consecutive gesture combinations for 10 times in 
sitting and standing respectively. In this way, 200 gesture samples could be collected 
from each subject, and 500 gesture samples could be collected in sitting and standing 
respectively. Finally, a total of 1000 gesture samples were obtained. During the exper-
iment, participants wore a wearable wrist camera on their right wrist and adjusted 
the position and Angle of the camera to ensure that the hand area occupied about 2/ 
5 of the frame. After that, the operator made actions according to the 10 predefined 
gesture trajectory instructions to collect gesture trajectory data. Before the start of 
a single action, according to the above definition of gesture segmentation rules, the 
operator first made a wrist swinging action, and then made a single gesture trajec-
tory. After completing a single gesture, the operator needed to maintain a static state 
for more than half a second. Under the guidance of the above rules, the subjects 
pre-collected a combination of gestures to ensure the validity of gesture data, which 
was not included in the collected 1000 experimental samples. After completing the 
acquisition and segmentation of all dynamic gesture trajectories and extracting the 
velocity data of valid individual gesture trajectories, the DTW algorithm was used 
to compute the variability of the gesture trajectories to classify the gestures and 
cross-validate the recognition accuracy. 

(1) Segmentation results of continuous gesture trajectory: 

According to the continuous gesture trajectory segmentation algorithm defined in the 
previous section of this chapter, all 100 sets of continuous gesture trajectories (10 sets 
of continuous gesture trajectories for each of the 5 subjects in sitting and standing 
positions) were segmented in order to extract valid individual gestures. The exper-
imental results showed that 94 of these sets of continuous gestures were correctly 
segmented into 10 correct individual gesture intervals, and six sets of continuous 
gestures were not correctly segmented. Among the 6 wrongly segmented gestures, 
three of which failed due to incorrect identification of the start and end points because 
of the subjects’ gesture irregularities (including wrist oscillation amplitude required 
before a single valid gesture being too small, and failing to maintain a stationary state 
after completing a single valid gesture). The remaining three sets of segmentation 
errors were caused by the operator’s wrist swing during a single gesture, which make 
the hand region leave the frame, and resulted in a redundant number of segmenta-
tions. Finally, out of 1000 correct gestures, 992 gestures were completely segmented, 
with a segmentation accuracy of 99.20%. Individual gesture trajectories that were 
not correctly segmented were subsequently processed for manual segmentation by 
specifying the start and end points of the gestures.
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Fig. 4.8 Velocity profiles for ten predefined gesture commands, reprinted from Ref. [6], CC BY 
4.0 

(2) Analysis of the results of background velocity calculations: 

According to the calculation results of gesture segmentation and background velocity 
based on SURF feature point matching, the velocity profile of a typical set of 10 
predefined gestures in the experiment was selected and plotted, as shown in Fig. 4.8. 
From the figure, it can be seen that simple gesture trajectories such as gesture ➀, 
➁, ➂, and ➃ have the shortest duration, with an effective gesture action duration of 
about 1 s, while complex trajectories such as gesture ➄, ➅, ➆, ➇, ➈ and ➉ have a 
duration of about 3 s. In order to reduce the influence of different gesture duration 
on classification, all gesture data were normalized using linear interpolation method. 

(3) Analysis of gesture instruction recognition results: 

After obtaining the valid velocity data of the corresponding gesture trajectories, 
the distance between the corresponding gesture velocity sequence data was calcu-
lated based on the DTW algorithm to classify the 1000 gesture samples. Three 
cross-validation methods were used as described below: (1) Leave-one-subject-out 
(LOSO), which selects one subject’s sample data as the test set and other subjects’ 
sample data as the training set; (2) Leave-other-subject-out (LPO), which selects one 
subject’s sample data as the training set and selects other subjects’ sample data as 
the test set; (3) Leave-one-group-out within one subject (LOOWS), which selects a 
group of samples from one subject as the test set and selects other sample groups of 
that subject as the training set. Based on the DTW algorithm, the type of gesture in 
the test set was determined as the recognition result based on the minimum DTW 
distance comparing the gesture trajectories of the training set. 

The accuracy rates of gesture recognition using different cross-validation methods 
are listed in Table. 4.2. The average recognition accuracy under LOSO cross-
validation achieved 97.34%, validating the performance of the system for unfamiliar 
operator gesture recognition. LPO cross-validation achieved an average accuracy of 
96.55%, which is lower than that of LOSO, reflecting the differences between subjects 
and the diversity of the collected data samples. The LOOWS method achieved an
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average accuracy of 98%, which is higher than LOSO, indicating that operators can 
add their own characteristic gestures to the system and can recognize gestures effec-
tively. As Table. 4.2 shows, the dynamic gesture recognition accuracy in the standing 
state is slightly higher than the gesture recognition accuracy in the operator’s sitting 
state. In addition to the random influence from the external environment, the features 
of gestures in the standing state are more obvious than those in the sitting state, 
because the operator’s movement space in the standing state is much larger than that 
in the sitting state.

In order to further validate the performance of the gesture recognition applica-
tion for mobile robot interaction control, the gesture velocity data collected in the 
standing and sitting states under the LOSO cross-validation method were analyzed 
respectively. The confusion matrix of recognition results under the two gesture oper-
ation states was calculated, as shown in Fig. 4.9. Figure 4.9a on the left shows the 
confusion matrix of 10 gesture recognition results in the seated state. Figure 4.9b on  
the right shows the confusion matrix of 10 gesture recognition results in the standing 
state. In addition, based on the confusion matrix, the accuracy rate, recall rate, and F1 
values of 10 gesture classifications were calculated to further verify the performance 
of gesture recognition, as shown in Fig. 4.10. Figure 4.10a represents the results in 
the sitting state. Figure 4.10b represents the results in the standing condition. The 
mean value of F1 value is as high as 0.984 in the sitting condition and 0.963 in 
the standing condition, indicating that its classification performance is better in the 
sitting condition than in the standing condition.

The confusion matrices in Fig. 4.9a and b respectively show the confusion results 
of 10 gestures under LOSO cross verification in sitting and standing states. Among the 
confused gestures, some kinds of gestures accounted for a slightly higher proportion 
of confusion. Now, this phenomenon is analyzed: gesture ➆ is incorrectly identified 
as gesture ➃, and the confusion ratio is 4.67% in the sitting state and 3.11% in 
the standing state, which is caused by the small longitudinal motion amplitude of 
some operators’ gestures ➆ along the y direction. For similar reasons, gesture ➇ was 
mistakenly identified as gesture ➃, with an error ratio of 4.67%. In addition, part of 
gesture ➉ was incorrectly recognized as gesture ➂ with an error ratio of 2.67%, which 
was caused by the fact that cross gesture ➉ was recognized as a gesture segmentation 
by wrist swing in the front part of the gesture trajectory. In addition, there are also 
some gestures ➇ that are incorrectly recognized as gesture ➁, with a confusion ratio 
of 2.67%, which is caused by the small amplitude of the lateral movement along the 
x-direction of gesture ➇. 

4.2.2.2 Verification of Gesture Recognition Interaction Functions 
for Robot Mobility Control 

After the validation experiments of the gesture trajectory recognition performance 
of the wearable wrist camera were completed, the practical application performance 
of this gesture track recognition scheme in the human–computer interaction system 
was further tested. According to the predefined 10 gesture trajectory commands, this
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(a) (b) 

Fig. 4.9 Recognition confusion matrixes of the ten gestures, reprinted from Ref. [6], CC BY 4.0. 
a Confusion matrix in sitting state. b Confusion matrix in standing state 

(a) (b) 

Fig. 4.10 Accuracy, recall and F1-score of gesture recognition, reprinted from Ref. [6], CC BY 
4.0. a Recognition results in sitting state. b Recognition results in standing state

book applied the designed gesture recognition system to the control of the omnidi-
rectional mobile chassis of a nursing robot for validation, and the selected nursing 
robot is a dual-arm robot platform built by autonomous integration for safe elderly 
assistance. During the functional verification experiments, the interaction perfor-
mance of the nursing auxiliary robot was verified in two motion control modes: ride 
mode (operator sitting) and teleoperation mode (operator standing). The operator 
wears a wrist camera and makes a corresponding gesture for recognition. Unlike the 
experimental test and analysis part of the recognition performance in this chapter, the 
gesture recognition in this section of the functional verification process is performed 
online in real time, with classification based on a specified training set and real-time 
output of the gesture recognition results. 

As shown in Fig. 4.11a, in ride-on mode, the user wore a wrist camera on his 
right hand and sat on the ride section in front of the mobile nursing robot. The 
operator gave control commands to operate the corresponding movements of the 
robot. In this mode, the user with lower limb disability can use the upper limb to 
make gesture commands to control the nursing auxiliary robot to make corresponding
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(a) (b) 

Fig. 4.11 Dynamic gesture recognition for mobile care robot control, reprinted from Ref. [6], CC 
BY 4.0. a Validation of the riding operation mode. b Validation of teleoperation mode 

auxiliary movements. Since the operator’s own motion will be superimposed on the 
robot’s motion when riding on the robot, the accuracy of gesture recognition is not 
significantly affected by the use of normalized velocity sequence features during 
the actual verification process, which demonstrates the robustness of the gesture 
trajectory recognition system and the corresponding algorithms proposed in this 
chapter. The gesture trajectory recognition in the operator’s standing posture can be 
used in teleoperation scenarios of mobile care robots, as shown in Fig. 4.11b. The 
operator can make specified control commands based on predefined gestures and 
switch the control between the mobile robot and the upper robotic arm. During the 
application validation in this section, the operator’s hand image data and the robot 
controller were connected via a Wi-Fi LAN, which was used to transmit the image 
data in time to the upper computer for recognition and processing, and sent it to the 
mobile robot for motion control. 

4.3 Human-Motion Based Teleoperation of Robot 
Articulated Torso 

4.3.1 A Dual-Arm Mobile Robot Prototype with Articulated 
Torso 

In order to adapt to the flexible task requirements in nursing assistance scenarios, this 
book designed a humanoid two-armed nursing assistance robot with a 3-degree-of-
freedom torso based on the Kinova Jaco2 collaborative robotic arm [13] and Bulldog
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wheeled mobile chassis, which can change the torso angle through torso motors in 
different task scenarios, and adjusted the workspace of the robot arm it supports to 
adapt to the unstructured task environment, as shown in Fig. 4.12. 

There is a four-wheel differential moving chassis under the two-arm humanoid 
robot, which is mounted with a humanoid mechanical torso and Jaco2 twin mechan-
ical arms. The humanoid torso consists of three servomotors, which can achieve 
torso movements in three directions: elevation, pitch, and rotation. During the tasks 
operation of the robot, the working space of the dual robotic arms can be adjusted 
by changing the lifting height and posture of the torso to ensure the flexibility of the 
end movement of the robotic arms. The rotating mechanism is driven by servo motor 
1 to move the gear set, which can realize the symmetrical rotation in the horizontal 
direction within the range of 330°. The tilting mechanism is driven by servo motor 
2 to drive the worm gear transmission to be responsible for the tilting action of the 
torso, which can achieve the motion range of 65° forward torso and 80° backward 
body. The lifting mechanism driven by the servo motor 3 can drive the ball screw to 
realize the rise and fall of the robotic arm within the range of 20 cm in the vertical 
direction.

Fig. 4.12 The components overview of the anthropomorphic dual-arm robot 
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The mobile chassis of the robot is equipped with a LiDAR sensor Rapid A1 
from Silan Technology, which is used for environmental perception and obstacle 
avoidance navigation during movement. The robot’s upper arms are two Kinova Jaco2 
collaborative arms with 6 degrees of freedom, a single arm extension of 98.4 cm, 
and a maximum load of 2.6 kg. The arms are equipped with an optional three-finger 
gripper to improve flexibility and efficiency in gripping the target object, with a 
maximum gripping force of 40 N and a maximum opening distance of 175 mm. 
The end of each Jaco 2 arm is equipped with an RGB-D camera RealSense [14] 
for visual feedback during the gripping operation. In addition, the humanoid robot 
is equipped with a pan-tilt camera on the top, which allows the main operator to 
observe the surrounding environment during teleoperation. To communicate with 
remote computer for debugging and remote operation, a high-power signal receiver 
is mounted on the back of the robot. 

4.3.2 Motion Mapping Strategy for Robot Articulated Torso 

As shown in Fig. 4.13, in this section, in order to realize the mapping between the 
operator’s limb movements and the robot’s torso motion pose, a wearable inertial 
motion capture device PN was adopted to capture the operator’s limb movements, 
similar to the upper limb pose mapping teleoperation technology route. The operator’s 
movement nodes are shown in Fig. 4.13a. To realize the mapping of the operating 
robot’s rotation, pitching, and lifting actions through the operator’s motion charac-
teristics during teleoperation, the structural characteristics of the robot are compared 
with the human body’s motion node coordinate system characteristics as shown in 
Fig. 4.13b. 

(a) (b) 

Fig. 4.13 Torso DoFs of the anthropomorphic robot compared to the operator. a Human skeletal 
nodes. b Human-robot torso motion mapping
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After comparing the torso freedom features of the robot with the movement node 
features of the operator’s body, the pose mapping rules for controlling the three 
torso movements of the robot were designed, as shown in Fig. 4.14. The design of 
the lifting and lowering bit-posture mapping rules for the robot torso is shown in 
Fig. 4.14a. In the human body movement behavior, the integrated selection of the 
right foot and the left foot node relative to the hip distance δzleg is the mapping 
input of the lifting action. During the control of the lifting action of the robot, the 
operator can make a standing up action or squatting action to achieve the change of 
the distance Z, mapping the position control of the servo motor 3 input to the torso 
lifting mechanism, and realize the position and pose mapping of the lifting action. 
The design of the pitch pose mapping rule for the robot torso is shown in Fig. 4.14b. 
Since the spine 3 nodes of the operator will rotate along the Y-axis relative to the 
hip node during the pitching process, the position control of the servomotor 2 of the 
pitching mechanism is realized by judging the Euler angle transformation of the spine 
3 nodes of the operator relative to the hip node along the Y-axis Euyspine, realizing 
the bit-pose mapping of the pitching action. Finally, as shown in Fig. 4.14c, the most 
obvious change characteristic of the operator during the turning process is the angular 
change of the spine 3 node relative to the hip node along the Z-axis. Therefore, the 
rotational action mapping of the robot torso is controlled by the positional control 
of the servo motor 1 in the rotational mechanism, which is realized by judging the 
rotational change of the spine 3 node relative to the hip node along the Z-axis Euzspine ,.

4.3.3 Validation of Human-Motion Based Robot Torso 
Control 

Based on the above-mentioned torso motion pose mapping strategy, the designed 
redundant degree-of-freedom humanoid robot was verified in the laboratory for 
the torso pose mapping teleoperation function. The operator wore a wearable iner-
tial motion capture device PN to make the corresponding movements, as shown in 
Fig. 4.15. With the ROS control framework built above, the operator’s whole-body 
node coordinate data was mapped to the robot controller. After receiving the topic, 
the industrial computer on the robot mapped the output control signals of the motor 
drivers of the three servo motors in the torso to make corresponding position control 
for each motor. As shown in Fig. 4.15a, when the operator made a squatting action, 
the distance from the left and right feet to the hip nodes changed, and the robotic 
arm lifting mechanism descended. As shown in Fig. 4.15b, when the operator made 
a prone action, the operator’s spine 3 node relative to the hip node along the Y-axis 
changed in angle, with the mapping control torso tilt mechanism tilting forward, and 
the robot made a prone action. As shown in Fig. 4.15c, when the operator made 
a turning action, the operator’s spine 3 node relative to the hip node along the Z-
axis changed the angle, and the mapping controlled torso rotation mechanism along 
the horizontal plane to rotate toward left or right, with the robot making a rotation
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(a) (b) (c) 

Fig. 4.14 Motion mapping strategy for 3-DoF anthropomorphic robot torso. a Lifting motion 
mapping. b Bending motion mapping. c Rotating motion mapping

action. So far, the remote operation application verification of pose mapping for the 
multi-degree-of-freedom torso of the humanoid robot has been completed, and the 
feasibility and practicability of the pose mapping strategy for the torso proposed in 
this book has been verified in the process.

4.4 Summary 

Robots oriented to unstructured application scenarios such as homecare or medical 
assistance are generally responsible for controlling the robot’s movement and robotic 
arm workspace adjustment by moving the chassis and other redundant degree-of-
freedom proprioceptive motion mechanisms. After realizing single-arm and dual-
arm pose mapping teleoperation based on upper limb movements, in order to realize 
teleoperation control of nursing assistance robots, this chapter carried out an intuitive 
teleoperation control study based on operator limb motion capture for the chassis
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(a) (b) (c) 

Fig. 4.15 Practical teleoperation of a 3-DoF anthropomorphic robot torso. a Lifting motion 
mapping. b Bending motion mapping. c Rotating motion mapping

movement control and the pose mapping control of the humanoid torso, respec-
tively. A dynamic trajectory recognition method of operator end gesture based on 
background velocity feature matching was designed for the chassis movement teleop-
eration control of the robot, and the chassis movement control of the nursing assistive 
robot was realized by a wearable wrist camera based on the recognition results of 
multiple gesture commands. For the teleoperation control of the redundant-degree-
of-freedom humanoid torso of the nursing care assistive robot, this chapter designed 
a torso pose mapping teleoperation control method for the slave robot based on 
the torso movement and lower limb movement data of the operator at the master 
end. Further application studies of the proposed bit-posture mapping teleoperation 
technique were carried out for two types of application scenarios, namely remote 
homecare and telemedical assistance. The main conclusions of this chapter are as 
follows: 

(1) A method for identifying dynamic gesture trajectories at the operator’s end 
was proposed. By extracting feature points in the background of the wrist 
camera worn by the operator to analyze the operator’s movements, it solved 
the problem of the current common visual recognition solution that the oper-
ator is restricted by the layout of visual equipment and fixed operating space, 
and improved accuracy and flexibility of dynamic gesture trajectory recognition. 
1000 gesture samples were collected and analyzed for 10 types of gesture trajec-
tories. The average recognition accuracy under LOSO cross-validation reached 
97.34%. Furthermore, mobile control gesture instructions were designed based 
on the implemented gesture trajectory recognition system, and the application 
verification of mobile control of nursing assistance robots was realized.
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(2) Facing the demand for torso motion pose mapping teleoperation control of multi-
degree-of-freedom humanoid robots, this chapter proposed a multi-degree-of-
freedom torso pose mapping teleoperation method based on the characteristics 
of the operator’s motion at the main end. Based on the relative coordinate trans-
formation between the coordinates of the hip joint nodes and the foot nodes, 
and the transformation between the coordinates of the hip joint nodes and the 
spine nodes, the pose mapping teleoperation rules for the three kinds of motion 
control of rotation, pitch and lift of the multi-degree-of-freedom humanoid robot 
were designed. Moreover, the functional verification was implemented on an 
integrally constructed solid robot, which verified the practicability of the torso 
motion pose mapping teleoperation control method proposed in this chapter. 

(3) Based on the research on pose mapping teleoperation technology, this chapter 
integrated the design of an auxiliary robot for the elderly in the home environ-
ment based on the needs of remote homecare scenarios. Moreover, the appli-
cation verification of remote teleoperation to assist in grabbing and delivering 
items was carried out to meet the daily needs of the elderly. In response to the 
demand for remote medical assistance, a teleoperated medical assistance robot 
system for the COVID-19 isolation ward was integrated and built. This study 
received clinical ethics review approval and carried out clinical functional verifi-
cation in the isolation ward of the First Affiliated Hospital of Zhejiang University 
School of Medicine during the epidemic, validating the practical performance 
of the posture mapping intuitive teleoperation technology studied in this article. 
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Chapter 5 
Communication in Human-Motion Based 
Robot Teleoperation 

Abstract This chapter explores the impact of wireless network performance on the 
control of robotic teleoperation systems, particularly in terms of pose-mapping tele-
operation. With the advancement of information and network technology, wireless 
networks, including private 5G and Wi-Fi 6, have increased the flexibility and cost-
efficiency of robotic systems by simplifying design, installation, and maintenance. 
However, these networks also introduce transmission delays and communication 
instability, which can significantly affect the time-sensitive nature of robotic teleoper-
ation. The chapter systematically evaluates the performance of various local wireless 
networks and examines how these delays influence control performance, discussing 
network co-design strategies to optimize performance for different requirements. 
Furthermore, it proposes a cloud server-based virtual network framework for ultra-
long-distance, intercontinental teleoperation, enabling human-robot pose mapping 
over 7800 km from Sweden to China. To mitigate the challenges of motion errors 
and delays caused by wide-area networks, a feedforward controller is introduced 
to improve teleoperation control. The proposed framework and controller are veri-
fied using a Kinova dual-arm robot platform, demonstrating effective teleoperation 
over vast distances and improving control stability despite long-distance connectivity 
issues. 

Keywords Wireless networks · 5G · Wi-Fi 6 · Intercontinental teleoperation ·
Feedforward controller 

5.1 Introduction 

With the development of information technology and network technology, wire-
less networks have made robotic systems more flexible, simplified the design and 
installation process, and reduced the maintenance costs of wired network deploy-
ments. Meanwhile, wide-area network connectivity has made it possible for opera-
tors to remotely teleoperate robots over different distances. Local wireless networks
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and wide-area wired networks have made robotic teleoperation systems more flex-
ible and extended the implementation distance of teleoperation systems, making 
them an indispensable part of teleoperation systems. At the same time, wireless 
networks introduce additional transmission delays and unreliable communications, 
which has a significant impact on time-sensitive robotic teleoperation control, and 
long-distance wide-area networks also pose challenges to teleoperation systems in 
terms of extremely large delays and control stability [1]. This chapter systemat-
ically investigates the impact of wireless local area network performance on the 
control performance of robotic teleoperation. Long-term performance testing and 
evaluation were conducted on various types of local wireless networks, including 
private 5G and Wi-Fi 6, with respect to the control performance of the aforemen-
tioned pose-mapping teleoperation system. Different network co-design methods 
for various control performance requirements were discussed. Furthermore, a cloud 
server-based virtual network intercontinental ultra-long-distance human–robot pose-
mapping teleoperation framework was proposed. The study examined the impact 
of intercontinental ultra-long-distance wide-area network connectivity performance 
on teleoperation control systems, and achieved teleoperation over 7800 km from 
Sweden to China across the Eurasian continent. To address significant motion 
errors and delays between the master and slave ends, a feedforward controller 
was designed to enhance teleoperation control performance under intercontinental 
ultra-long-distance wide-area network connectivity, and intercontinental ultra-long-
distance pose-mapping teleoperation functionality verification was implemented on 
the Kinova dual-arm robot platform. 

5.2 Robot Teleoperation via Local Wireless Networks 

5.2.1 Performance Evaluation Under Local Area Network 
Conditions 

Traditional methods typically rely on empirical model-based simplifications of 
network channel modeling to assess the impact of wireless networks on control 
systems, which often fail to replicate the uncertain events encountered in real wire-
less network connections and cannot accurately evaluate network reliability. In order 
to systematically quantify and evaluate the network performance and control perfor-
mance of teleoperation control systems under local area network connection condi-
tions, this book designs a semi-physical simulation test system based on network 
hardware-in-the-loop. The architecture of this system is illustrated in Fig. 5.1, 
consists of four components: a robot controller simulation platform, a robot actuator 
simulation platform, network monitoring devices, and deployment in a real network 
environment.

Among which, network monitoring devices employ the Bifrost ET2000 Ethernet 
multi-channel probe [3], which can listen to inter-device communication in the
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Fig. 5.1 Diagram of the network hardware-in-the-loop framework, reprinted from Ref. [2], CC BY 
4.0

network without introducing additional latency. The simulation controller and actu-
ator of the robot are connected through a real network test environment and accessed 
through the network listening interface. The controller is responsible for prepro-
cessing pose data for remote operation and kinematic calculations of the robot, it 
also converts and outputs joint space data for the EGM interface in real-time and 
at a high frequency. The written network listening program continuously records 
real-time raw data packets from the controller port and actuator port, and calculates 
the packet latency, as shown in Fig. 5.2 

Fig. 5.2 Network latency measurement using the ULT timestamp device
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The delay introduced by computation in the overall teleoperation system is 
minimal. This book focuses solely on network communication delays, specifically 
calculated based on end-to-end delay at the network layer. The computation and 
definition of delay data are as follows: 

• Downlink Latency LD : The delay incurred by a data packet traveling from 
the controller end (operator) to the actuator end (robot) within the system. 
It is calculated by subtracting the absolute timestamp of the packet captured 
from the DOWN_OUT port of the ET2000 from the absolute timestamp of the 
corresponding packet captured from the UP_IN port: 

LD = TDR − TDP (5.1) 

• Uplink Latency LU : The delay generated within the system by a data packet trav-
eling from the actuator end (robot) to the controller end (operator). It is calculated 
by subtracting the absolute timestamp of the packet captured from the DOWN_ 
IN port of the ET2000 from the absolute timestamp of the corresponding packet 
captured from the UP_OUT port. 

LU = TUP − TUR (5.2) 

During practical testing, the Wireless Local Area Network (Wi-Fi 6) access points 
(APs), private 5G base stations (UPF, User Plane Function), and user equipment 
(UE) were strategically deployed as depicted in the floor plan diagram shown in 
Fig. 5.1. For Wi-Fi 6 network evaluations, the distances between two AP nodes 
were configured across three distinct environments: close-range, mid-range, and 
long-range (referred to as Close-range Wi-Fi 6, Mid-range Wi-Fi 6, and Far-range 
Wi-Fi 6, respectively). The private 5G network, sourced from Ericsson’s private 
industrial wireless solution, facilitated connectivity between the 5G terminal access 
device (UE) and the 5G base station gateway (UPF). Utilizing Phoenix Contact’s 
industrial-grade cellular router node, the 5G terminal access device was selected for 
this study. Ethernet connectivity was established through cable connections between 
the DOWN_OUT and UP_OUT ports of the ET2000. To ensure uninterrupted moni-
toring across various wireless local area networks, each Wi-Fi 6 AP node was linked 
to the DOWN_OUT and UP_OUT ports, while the base station gateway (UPF) of 
the 5G network was connected to the DOWN_OUT port, and the UE was connected 
to the UP_OUT port. 

5.2.1.1 Network Configuration and Experimental Setup 

As shown in Fig. 5.3, the operator utilizes motion capture devices to capture human 
body motion data, which undergoes transformation and transmission to the controller 
at the robot’s end using the aforementioned pose mapping strategy to control the YuMi 
robot. This system is based on ABB’s EGM Position Guidance option interface. EGM
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Position Guidance is specifically designed for advanced robot users, offering a low-
level position guidance control interface that bypasses relevant path planning. Users 
can swiftly read positions of the relevant motion system and write positions to the 
system at high speeds, with a maximum frequency of 250 Hz (up to every 4 ms). 
Compared to other external motion control methods, EGM Position Guidance boasts 
advantages such as higher speed, lower loop delay, and reduced wait time. While 
EGM typically accepts input data in the form of joint values or end-effector pose 
values for motion tracking and guidance, in the case of 7-axis robots like the YuMi 
dual-arm robot utilized in this system, only joint values can be utilized as guidance 
data input. This limitation stems from the inability of redundant freedom robotic arms 
to perform high-frequency inverse kinematics calculations within the controller and 
output them in real-time. Therefore, as illustrated in Fig. 5.3, the processing of pose 
data at the operator end is achieved through pre-computed inverse kinematics within 
the master controller. The focus of this chapter’s work primarily revolves around 
the impact of wireless communication links on the transmission of joint space data 
calculated at the operator end and sent for control of the slave-side robotic arm. 

Firstly, real-time motion data of the operator is captured using Axis Neuron soft-
ware running on a Windows system. A Ros_Serial communication interface is devel-
oped based on the NeuronDataReader SDK to transmit the human motion data from 
the Windows end to the Ubuntu system. At the Ubuntu end, the motion control 
program retrieves the joint coordinate data of the human body and processes it 
using the pose mapping strategy designed in this book to convert it into the end-
tool center point data of the robot. Subsequently, real-time calculation of the robot’s

Fig. 5.3 Network configuration and data flow of the teleoperation system, reprinted from Ref. [2], 
CC BY 4.0 
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desired joint space position data is performed using an inverse kinematics solver. 
The motion control program establishes a connection with the robot-side motion 
control processing program via the TCP protocol. The motion control processing 
program on the robot side controls the general motion of the robot, such as linear 
and joint motion, as well as other advanced functionality interfaces and external I/ 
Os, based on the given robot target positions. EGM control is enabled through pre-
established TCP communication (based on ABB’s PC Interface 616-1), establishing 
a data connection between the master and slave EGM interfaces. The EGM protocol 
utilizes Google Protocol Buffers for encoding, offering advantages in terms of trans-
mission speed and language neutrality. Given that the transmitted data consists of 
high-frequency real-time data, a certain packet loss rate is tolerable. According to 
the Google Protocol Buffers protocol, the robot side sends robot status data to the 
master side (operator side) or reads command data from the master side every 4 ms, 
regardless of when the sensor sends data. 

This section’s comparative experimental design aims to evaluate how the intro-
duction of wireless networks affects robot control performance, while also examining 
the correlation between control performance parameters and communication perfor-
mance parameters from a control perspective. By the previously outlined experi-
mental system configuration, a computer running the motion capture software Neuron 
Axis is utilized to capture and parse human motion data. The operator wears a wear-
able inertial motion capture device and performs repetitive swinging motions with 
their right arm along the Y-axis direction of the global coordinate system, repeated 
eight times. These motions are then translated into control signals for the robot on 
the slave side. To ensure consistency in the motion data from the master side during 
the comparative experiment, the operator’s human motion data is pre-recorded and 
replayed for 1 h for each test. The motion data from the operator side is transmitted 
from Windows to Ubuntu at a frequency of 125 Hz for data parsing and kinematic 
calculations. The robot controller operates on a Windows computer equipped with 
ABB RobotStudio, enabling the simulation of EGM-guided robot motion. A network 
loopback latency program runs on another standalone computer to measure network 
latency from the ET2000 detector. To achieve absolute time synchronization between 
multiple computers, an NTP (Network Time Protocol) time synchronization server 
is established between the network latency listening computer and other computers 
(including the Ubuntu robot motion control computer and the robot motion simu-
lator). This ensures millisecond-level timing synchronization for other computers 
and network devices in the system, meeting the time synchronization requirements 
of this work. 

To evaluate the influence of different wireless network conditions on teleoperation 
control performance, this study selects Ethernet wired connection control as the 
baseline network condition. It compares the teleoperation control performance under 
the following conditions: Wi-Fi 6@Close-range, Wi-Fi 6@Mid-range, Wi-Fi 6@Far-
range, and 5G wireless network connections. Additionally, to mitigate the impact of 
wireless local area networks on the control performance of the slave side, this section 
proposes a method for filtering EGM-received data on the robot’s slave side to address 
oscillations in joint control caused by network condition fluctuations. A comparison
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Table 5.1 Experiment setup under different network conditions 

Network 
conditions 

Wired 
connection 
Ethernet 

Wireless 
connection 
Wi-Fi 6 

Wireless 
connection 
Wi-Fi 6 

Wireless 
connection 
Wi-Fi 6 

Wireless 
connection 5G 

Short-range Mid-range Long-range 

No filtering Baseline 
comparison 

Performance 
comparison 

Performance 
comparison 

Performance 
comparison 

Performance 
comparison 

Filtering Filtering 
comparison 

Performance 
comparison 

Performance 
comparison 

Performance 
comparison 

Performance 
comparison 

is made between controlling the robot using raw joint control data from the master 
side and using filtered joint data. In summary, the comparative experimental design 
is outlined in Table 5.1. 

5.2.1.2 Key Metrics Definition for Control and Communication 
Evaluation 

To delve deeper into the relationship between robot teleoperation control perfor-
mance and network communication, this section employs key error metrics for char-
acterizing control system performance and network performance indicators to assess 
teleoperation performance under varying network conditions. Here, the desired joint 
position values during teleoperation (joint position data sent from the master side) are 
denoted as Jd , while the measured actual joint position values of the robot (real-time 
joint position feedback from the EGM interface) are represented by Jr . Jd and Jr 
signify time series signals recorded based on system timestamps at a sampling rate 
of 500 Hz. 

During the back-and-forth motion of the operator, the position variation of joint 1 
of the robotic arm resembles a sinusoidal-like signal. By subtracting the timestamps 
corresponding to the peaks of the Jd and Jr waveforms, we can determine the observed 
motion latency τ

∧

between the master and slave ends, as expressed in Eq. (5.3). The 
motion latency T̂ for the reciprocating motion cycle in a single test is determined by 
Eq. (5.4). 

τ̂i = arg max 
t∈Ni 

Jr(t) − arg max 
t∈Ni 

Jd (t) (5.3) 

T̂ = [  ̂τ1 τ̂2 . . .  τ̂P ] (5.4) 

where i = [1, 2, 3, . . .  ,  P], Ni represents the ith back-and-forth motion cycle. 
The cross-correlation between Jd and Jr, denoted by the cross-correlation coeffi-

cient R̂Jd Jr , is computed as per Eq. (5.5). The average motion latency T between the 
two position data sequences is calculated according to Eq. (5.6).
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R̂Jd Jr (m) = 

⎧ 
⎨ 

⎩ 

N −m−1∑

n=0 
J ∗ 
dn + mJ ∗rn, m ≥ 0, 

R̂∗
JrJd (−m), m < 0. 

(5.5) 

T = arg max 
m∈[− T 

2 , 
T 
2 ] 
R̂Jd Jr (m) (5.6) 

To further evaluate the performance of the remote teleoperation control system, 
the difference between the expected joint position Jd and the measured actual joint 
position Jr at the peaks of their respective waveforms is computed as the motion 
peak error εpeak , as shown  in  Eq. (5.7). The sequence of peak errors Epeak during a 
single test process is represented by Eq. (5.8). 

ε̂peaki = max 
t∈Ni 

Jr(t) − max 
t∈Ni 

Jd (t) (5.7) 

E
∧

peak =
[

ε̂peak1 ε̂peak2 . . .  ̂εpeak3
]

(5.8) 

Furthermore, the calculation of the peak average error Epeak is given by Eq. (5.9): 

Epeak = mean( ̂Epeak ) =
∑P 

1 ε̂peakp 

P 
(5.9) 

To assess network performance, the latency L is recorded during each experiment, 
covering both uplink latency LU and downlink latency LD. Further analysis involves 
computing and examining the normalized probability density function (PDF) and 
complementary cumulative distribution function (CCDF) of latency L. This statistical 
approach provides insights into the overall performance of network conditions. 

5.2.1.3 Intuitive Comparison of Control Performance Under 5G 
and Wi-Fi 6 

According to the set network testing conditions described above, this section first 
conducts a comparative analysis of the performance of four wireless network condi-
tions involved in this chapter: including three different distances of Wi-Fi 6 connec-
tions and 5G network connections. Using the previously mentioned network sniffing 
devices, it tests and records the uplink latency LU and downlink latency LD during 
teleoperation under these four local wireless network connection conditions in real-
time. Subsequently, statistical analysis is performed to calculate and analyze the 
PDF and CCDF curves under each network condition from a statistical perspec-
tive. As illustrated in Fig. 5.4, the PDF and CCDF curves depict the performance of 
four local wireless network conditions: close-range Wi-Fi 6, mid-range Wi-Fi 6, far-
range Wi-Fi 6, and 5G, from left to right. These curves serve to characterize network 
performance. Upon comparing the performance curves of Wi-Fi 6 and 5G conditions,
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Fig. 5.4 The network profile analysis of Wi-Fi 6 and 5G network conditions, reprinted from Ref. 
[2], CC BY 4.0 

distinct differences emerge: the CCDF curve of Wi-Fi 6 networks demonstrates a 
“large head, short tail” (LHST) characteristic, indicating a higher probability distri-
bution of latencies above 10 ms. In contrast, the CCDF curve of 5G networks displays 
a “short head, large tail” (SHLT) feature, suggesting a lower probability distribution 
of latencies above 10 ms compared to Wi-Fi 6. These observations align with the 
inherent performance characteristics of the two wireless networks. The differences 
stem from the operational mechanisms of each network type. The flexibility of time-
domain scheduling in 5G (NR, New Radio) systems results in more bounded network 
latencies. Conversely, Wi-Fi 6 network transmission, governed by the Carrier Sense 
Multiple Access with Collision Avoidance (CSMA/CA) algorithm, entails a waiting 
period for devices before packet transmission. This leads to a CCDF latency distri-
bution curve of Wi-Fi 6 networks with a smaller head and a larger tail compared to 
5G networks, indicating a higher occurrence of large latencies. 

5.2.2 Impacts of Local Wireless Networks to Teleoperation 

5.2.2.1 Impacts of Wireless Network Fluctuation on Teleoperation 

To visually evaluate how changes in network connectivity environment affect the 
real-time pose mapping teleoperation system’s control performance, this chapter 
introduces multiple AP connections within the same frequency band in the Wi-Fi 
6@short-range network conditions scenario, as illustrated in Fig. 5.5. This subsection 
of testing is divided into two stages: Stage 1 and Stage 2. As depicted in Fig. 5.5b, 
the introduction of additional AP connections leads to a noticeable increase in both 
uplink latency LU and downlink latency LD during Stage 2, attributed to frequency 
interference. This is evident from the probability statistical curves of network latency, 
as illustrated in the PDF and CCDF curves in Fig. 5.5a and c, respectively. In Stage 
2, both uplink latency LU and downlink latency LD exhibit a higher occurrence of
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Fig. 5.5 The robot motion performance is affected by sudden changes in network conditions, 
reprinted from Ref. [2], CC BY 4.0 

high-latency distribution, with longer “tails” in the CCDF curves, indicating higher 
latencies throughout the entire statistical period of Stage 2. Consequently, the motion 
latency τ at the master and slave ends during Stage 2 is notably higher compared to 
Stage 1. This underscores the significant impact of network performance fluctuations 
(resulting in increased network latency) on the teleoperation control performance of 
this system. 

5.2.2.2 Statistical Analysis for the Impact of Wireless on Teleoperation 

To comprehensively assess the influence of overall network performance on control 
system efficiency, this section initially employs wired Ethernet connection as the 
reference for teleoperation performance comparison experiments. It contrasts control 
performance parameters across four distinct wireless network scenarios: short-range 
Wi-Fi 6, medium-range Wi-Fi 6, long-range Wi-Fi 6, and 5G network environments, 
focusing on motion latency and peak error. Figure 5.6a delineates motion latency data 
curves for both wired and wireless network connections over a testing interval. Under 
the Ethernet wired connection, the master–slave motion latency stands at 0.3138 s. 
Despite wireless network conditions exhibiting only slightly higher overall motion 
latency with average latencies of 0.3229 s, 0.3140 s, 0.3213 s, and 0.3139 s for short, 
medium, and long-range Wi-Fi, and 5G networks respectively, the fluctuations in 
master–slave motion latency are conspicuous. This suggests the unstable nature of 
network loop connections under wireless conditions. Regarding joint motion peak 
error, depicted in Fig. 5.6b, the average peak error under wired connection condi-
tions is −2.232°. It is evident that compared to wired connections, errors are more 
pronounced in the four wireless network environments. Moreover, peak motion error 
under the three Wi-Fi 6 wireless network conditions is slightly higher than that



5.2 Robot Teleoperation via Local Wireless Networks 105

under 5G, with average error values of −2.841°, −2.851°, and −2.239° respec-
tively for short, medium, and long-range Wi-Fi 6 conditions, while the average error 
value under the 5G network condition is −2.724°. Through the aforementioned data 
comparison, it is apparent that alterations in local network connection environments, 
particularly wireless setups versus wired ones, exert a notable impact on the overall 
control performance of teleoperation systems, particularly concerning peak joint 
motion error at the master–slave ends. Furthermore, the motion loop latency at the 
master–slave ends, which is approximately 300 ms, primarily pertains to control loop 
latency. Notably, the latency introduced by wireless networks, as opposed to wired 
networks, does not significantly affect control loop latency. 

To further compare how overall network performance affects control efficiency, we 
conducted continuous motion testing under each network condition using the setup 
described earlier. Each network condition underwent a continuous, uninterrupted 
4-h test to evaluate the master–slave motion tracking performance. Additionally, 
we calculated peak errors for both master–slave and joint motions. Each cycle of 
reciprocal motion at the operator end takes approximately 4.033 s to record. Thus, 
each test under each network condition yielded no fewer than 3600 performance 
parameter samples. Furthermore, using the aforementioned ET2000 network sniffer, 
we obtained no fewer than 2,000,000 network latency data samples continuously 
over a 4-h period. 

The aforementioned sample data were collected in real-time and correspond to the 
system’s absolute timestamps. Statistical analysis was performed on these control 
performance and network performance sample parameters. Similar to the analysis 
of network latency PDF and CCDF curves described earlier, probability distribution 
curves were plotted for control performance parameters under each test condition. As 
shown inFig.  5.7, the PDF distributions of control performance parameters under four 
different wireless network conditions were compared with Ethernet wired connec-
tion. Figure 5.7a–d respectively illustrate the PDF curves of master–slave motion 
delay and joint motion peak error under Wi-Fi 6 networks at near, medium, and

(a) (b) 

Fig. 5.6 Overview comparison of control performance using the raw data, reprinted from Ref. [2], 
CC BY 4.0. a Motion delay. b Joint position peak amplitude error 
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far distances, as well as 5G network, compared to wired Ethernet connection. It is 
evident that, compared to wired connection, the distribution of master–slave motion 
delay under four wireless network conditions is similarly concentrated, but wireless 
connections have wider distributions along the x-axis, with significant probability 
distribution between 0.35 s and 0.5 s. However, the distribution of joint motion error 
under wireless network conditions is notably different from wired connection. It is 
apparent that the distribution of joint motion peak error under four wireless network 
conditions is significantly larger than that under wired connection, with the peak 
error in Wi-Fi 6 networks at three distances being larger than that under 5G network 
conditions.

To mitigate the influence of wireless network fluctuations and communication 
uncertainties on teleoperation control performance, a low-pass filter was imple-
mented at the receiving end of the robot’s data on the slave side. This filter aimed 
to smooth out the received joint motion data, employing a 4th-order Butterworth 
design with a cutoff frequency of 250 Hz to ensure a balanced frequency response. 
After integrating the low-pass filter into the robot’s system, comparative experi-
ments were conducted under the same conditions as the previous wired Ethernet 
baseline, encompassing four distinct wireless network connection scenarios. The 
intuitive visual contrast of the experiment’s outcomes is depicted in Fig. 5.8. When 
comparing the master–slave motion delay and joint peak error with and without the 
filter on the slave side, as illustrated in Fig. 5.6, a notable observation emerges. The 
introduction of the low-pass filter markedly reduces joint peak errors under wire-
less local area network conditions, effectively aligning them with the performance 
observed under wired connections. However, this improvement comes at a slight cost: 
the introduction of the filter marginally increases the motion delay of the master– 
slave system, resulting in an overall delay increase of approximately 0.01 s across 
all network conditions.

Similarly, after integrating a low-pass filter on the slave side, teleoperation master– 
slave tracking performance underwent continuous, uninterrupted testing for four 
hours under each network condition. Statistical analysis was conducted on the exper-
imental data of control performance parameters with the introduction of the low-pass 
filter on the slave side. A global performance analysis of master–slave motion delay 
and joint motion errors over extended testing periods was performed, and the control 
performance PDF parameters under different network conditions were plotted, as 
shown in Fig. 5.9. Comparing the control performance with and without the filter 
on the slave side, as illustrated in Fig. 5.7, the impact of the filter introduction on 
master–slave delay slightly increased under near, mid, and far-range Wi-Fi 6 network 
connections and 5G network connections, as indicated in the left graphs of Fig. 5.9a– 
d. Particularly for 5G network connections, the introduction of the filter had a more 
pronounced effect on master–slave delay compared to Wi-Fi 6 network connections. 
Regarding joint motion peak error parameters, as depicted in the right graphs of 
Fig. 5.9a–d, it is evident that with the implementation of the low-pass filter on the 
slave side, the error values under all network conditions were reduced compared to 
the original unfiltered data input teleoperation. Additionally, the distribution of error
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(a) 

(b) 

(c) 

(d) 

Fig. 5.7 Statistical analysis of robot control using the raw data, reprinted from Ref. [2], CC BY 
4.0. a PDF curves of control performance under Wi-Fi 6@short network condition. b PDF curves 
of control performance under Wi-Fi 6@medium network condition. c PDF curves of control perfor-
mance under Wi-Fi 6@long network condition. d PDF curves of control performance under 5G 
network condition
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(a) (b) 

Fig. 5.8 Overview comparison of control performance after deploying a filter, reprinted from Ref. 
[2], CC BY 4.0. a Motion delay. b Joint position peak amplitude error

values under the four wireless network connection conditions was lowered to a level 
nearly consistent with Ethernet.

5.2.3 Communication and Control Co-design 
for Teleoperation 

Building on the performance comparison experimental results, we further computed 
the Complementary Cumulative Distribution Function (CCDF) curves for master– 
slave motion delay and peak error during long-term testing of both raw data mapping 
teleoperation and filtered teleoperation. The comparisons of control performance 
parameters without and with filters are shown in Figs. 5.10 and 5.11, respectively. 
The CCDF probability distribution curves for motion delay under four different 
wireless network conditions reveal that, without filtering, the motion delay distri-
butions across the five network conditions are similar, as illustrated in Fig. 5.10a. 
However, the CCDF probability distribution curves for the peak error parameter show 
clear distinctions under different network conditions, as depicted in Fig. 5.10b. The 
Ethernet wired connection exhibits the smallest concentrated distribution of peak 
error, while the three Wi-Fi 6 network connections show a larger concentrated distri-
bution of peak error. The 5G network connection has a smaller error distribution 
compared to Wi-Fi 6, but it is significantly larger than that of the wired connection 
condition.

The CCDF probability distribution curves for motion delay and peak error after 
introducing the filter are shown in Fig. 5.11. Compared to the CCDF probability 
curves of control performance parameters without the filter in Fig. 5.10, it is evident 
that the introduction of the filter significantly optimizes the probability distribution of 
the peak error, with the peak error overall tending towards a smaller error distribution. 
However, at the same time, the distribution of master–slave motion delay slightly
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(a) 

(b) 

(c) 

(d) 

Fig. 5.9 Statistical analysis of control after deploying a filter on robot controller, reprinted from 
Ref. [2], CC BY 4.0. a PDF curves of control performance under Wi-Fi 6@short network condi-
tion. b PDF curves of control performance under Wi-Fi 6@medium network condition. c PDF 
curves of control performance under Wi-Fi 6@long network condition. d PDF curves of control 
performance under 5G network condition
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(a) (b) 

Fig. 5.10 CCDF curves of control metrics without filtering, reprinted from Ref. [2], CC BY 4.0. 
a CCDF curves of motion delay. b CCDF curves of joint position peak error 

(a) (b) 

Fig. 5.11 CCDF curves of control metrics with filtering, reprinted from Ref. [2], CC BY 4.0. 
a CCDF curves of motion delay. b CCDF curves of joint position peak error

increases, with the most noticeable increase in delay observed under the 5G network 
condition. 

For general control systems, both response speed and accuracy are of paramount 
concern in practical production scenarios. Consequently, when addressing the needs 
of teleoperation control systems tailored to diverse application requirements, the 
selection of an appropriate control strategy to meet specific usage scenarios is summa-
rized as depicted in Table 5.2. In teleoperation systems requiring swift responses, 
the implementation of end-point filtering results in a slight increase in end-to-end 
delay. Under such circumstances, the performance gap between LHST and SHLT 
wireless networks is marginal. However, in scenarios where filtering is not utilized, 
the delay observed in LHST network conditions is smaller compared to SHLT. Given 
these performance benchmarks, Wi-Fi 6 is favored over 5G. In teleoperation systems 
emphasizing precision, the adoption of end-point filtering notably reduces end-to-
end response errors. In this context, LHST network optimization surpasses SHLT,
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Table 5.2 Network profile selection strategy for different control scenarios, reprinted from Ref. 
[2], CC BY 4.0 

Design expectations Control strategy Network profile selection Examples 

Responsiveness End-point filtering LHST ≈ SHLT Wi-Fi 6 or 5G 

Without filtering LHST < SHLT Wi-Fi 6 

Accuracy End-point filtering LHST > SHLT 5G 

Without filtering LHST ≈ SHLT Wi-Fi 6 or 5G 

yielding superior error performance. Consequently, 5G emerges as the preferred 
choice. Nonetheless, the disparity in end-point error performance between LHST and 
SHLT wireless networks is inconsequential in systems lacking end-point filtering. 

5.3 Robot Teleoperation via Wide-Area Wired Networks 

5.3.1 The Architecture of the Intercontinental 
Communication Link 

Teleoperation control systems typically use local networks to establish master–slave 
communication for controlling remote robots. However, stable and reliable inter-
continental wide-area network (WAN) communication links are rarely developed. 
Traditional personal wireless devices or local network cables are insufficient for 
intercontinental dedicated network connectivity. Instead, dedicated network lines 
can be established through specific service providers or by using dedicated network 
servers from cloud providers such as Amazon Web Services (AWS), Microsoft Azure, 
or Google Cloud Platform (GCP). Compared to local network connections, cloud 
service-based network frameworks offer efficient resource utilization and simplified 
management. They also provide a strong foundation for deploying and integrating 
cloud-based applications and services. 

To enable the connection between the control input data from the master operator 
and the control reception data of the slave robot in a teleoperation system, this 
study utilizes the virtual private network (VPN) service provided by Google Cloud 
Platform. As illustrated in Fig. 5.12, an instance with 20 GB of memory and a 
single-core Intel Broadwell virtual CPU running an Ubuntu system is instantiated 
on Google Cloud Platform. This instance serves as the server for deploying and 
hosting the VPN, implemented using OpenVPN [4], which is an application-layer 
VPN implementation based on the OpenSSL library. Compared to traditional VPNs, 
it boasts simple and user-friendly configuration. By leveraging the industry-standard 
SSL/TLS protocol, OpenVPN ensures secure data transmission channels between 
connected devices.
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Fig. 5.12 WAN teleoperation framework based on google cloud platform, reprinted from Lyu et al. 
[1], Copyright (2025), with permission from IEEE 

By creating an Ubuntu virtual machine instance on GCP and installing and 
deploying OpenVPN, you can use the virtual machine as the server side of a VPN. 
Configuring OpenVPN in point-to-point connection mode enables secure encrypted 
communication between any client nodes connected to the server. Once the VPN 
setup is complete, configure the data output terminal of the main operator and the 
motion data receiving terminal of the secondary robot as VPN clients. The Google 
Cloud server is set to be located in Frankfurt. 

To systematically study the performance of network connections during inter-
continental teleoperation, it is necessary to test network loopback latency. However, 
using a public cloud to build an OpenVPN service does not allow for protocol layer 
packet analysis. Therefore, a network latency listener based on PING (Packet Internet 
Groper) [5] needs to be developed, using the IP addresses of two devices on the 
network route. PING is a service command operating at the application layer of the 
TCP/IP network architecture, primarily sending ICMP (Internet Control Message 
Protocol) [6]. Echo request packets to a specific destination host. This enables 
the testing of end-to-end latency and real-time millisecond-level latency recording, 
which facilitates subsequent analysis by correlating control performance changes 
with network performance metrics. 

Based on the previously implemented dedicated intercontinental teleoperation 
data transmission network using a public cloud platform, this section designs an 
intercontinental long-distance pose mapping teleoperation system. Two test case 
teleoperation control systems are set up, utilizing the YuMi dual-arm robot and the 
dual-arm Kinova robotic arm. An intercontinental dedicated network link is estab-
lished between Västerås, Sweden, and Hangzhou, China, using the Google Cloud 
Platform and OpenVPN. The operator’s motion capture and action data processing 
are deployed in Sweden as the input for the teleoperation master side, while the 
controlled robots are deployed in China as the output of the teleoperation system 
slave side. The straight-line distance between the master and slave sides exceeds 
7,800 km.
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The intercontinental teleoperation system architecture for the YuMi dual-arm 
robot is set up as shown in Fig. 5.13. The teleoperation master input side is deployed 
in Sweden and includes a Windows computer (Intel(R) Core(TM) i7-7500U CPU @ 
2.70 GHz × 4 cores) connected to wearable motion capture devices. Additionally, the 
master side deploys ROS on a NUC10 computer with Ubuntu(Intel(R) Core(TM) i5-
10210U CPU @ 1.60 GHz × 4 cores). These computers are connected via a NetGear 
GS105 Gigabit switch and accessed to the internet. On the slave side, a Windows 
computer configured with the RobotStudio simulator controls the motion of the 
YuMi dual-arm robot. This Windows computer is directly connected to the Ethernet. 
The IP configurations of the master and slave sides are matched to the cloud server 
node configuration. OpenVPN clients are started on both the master side Ubuntu 
system and the slave side Windows system to establish the intercontinental network 
connection between them. 

The real-world validation conducted on the dual-arm robot built using the Kinova 
Jaco robotic arms is depicted in Fig. 5.14. The teleoperation input from the master 
side, involving human body motion, aligns with the configuration of the YuMi robot 
teleoperation system. On the slave side, an Ubuntu system NUC10 is deployed with 
ROS installed to serve as the local robot controller for the Kinova dual robotic 
arms. The ROS systems on the operator’s master side and the robot’s slave side 
are connected to the public cloud virtual private network. They exchange topic data 
through the shared ROS_MASTER approach, where the ROS system on the robot 
side serves as the host for the ROS_MASTER, and the ROS system on the master 
side, processing the operator’s motion data, acts as the client.

Fig. 5.13 Simulated verification of WAN teleoperation on dual-arm YuMi robot 
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Fig. 5.14 Real-life verification of WAN teleoperation on the anthropomorphic robot 

5.3.2 Feedforward Control Framework and the Comparative 
Results 

As depicted in Fig. 5.15, the operator’s motion capture and data processing system, 
along with the controller, are deployed in Västerås, Sweden. Meanwhile, the 
controllers for the teleoperation robots in both test cases are stationed in Hangzhou, 
China. The communication between the master and slave sides is facilitated through 
a VPN established on the Google Cloud Platform. Throughout the testing process, 
parameters such as motion delay and peak joint position error for both master and 
slave sides, as well as network latency, are meticulously recorded and analyzed based 
on the performance indicators outlined in Chapter 5. Experimentally, performance 
tests commence under local wired connection conditions as a benchmark. Subse-
quently, intercontinental teleoperation performance comparison tests between China 
and Sweden are conducted. Each intercontinental experimental test lasts for one 
hour under various network conditions, and the results are meticulously analyzed 
and compared.

The experimental results under local Ethernet connection conditions are presented 
in Fig. 5.16. With minimal network latency in the local setup, the primary factor influ-
encing teleoperation control performance is the latency introduced by the controllers. 
Analysis of the continuous one-hour testing data reveals an average network latency 
of 0.316 s for both master and slave sides, with an average peak joint motion error 
of −2.232°.

As illustrated in Fig. 5.17, compared to the local wired network connection, inter-
continental teleoperation experiences a latency exceeding 630 ms. This increase 
is attributed to the multiple hops involved in establishing the entire virtual private 
network connection. Additionally, the increased network loopback latency between
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Fig. 5.15 Experiment setup and comparison for intercontinental robot teleoperation, reprinted from 
Lyu et al. [1], Copyright (2025), with permission from IEEE

Fig. 5.16 Benchmark performance under local Ethernet connection conditions, reprinted from Lyu 
et al. [1], Copyright (2025), with permission from IEEE
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the master and slave sides leads to a rise in motion delay up to 1.230 s, and the 
average error value climbs to −2.777°—significantly higher than which under the 
local wired network connection conditions. Overall, teleoperation control perfor-
mance deteriorates noticeably under intercontinental network connection conditions, 
with substantial increases in latency and error values for both master and slave sides. 

In the context of large latency teleoperation scenarios across intercontinental 
long-distance networks, a feedforward controller is devised to further counterbal-
ance errors stemming from network latency. This controller is designed based on a 
previously measured network latency parameter of approximately 630 ms. 

Feedforward control, also known as feedforward regulation, is a widely employed 
technique in control systems. It involves predicting the discrepancy between the 
system output and the desired output and making corrections to achieve precise 
control. Typically, this method introduces a correction signal at the system input to 
mitigate anticipated errors. The essence of feedforward control lies in introducing a 
correction signal prior to the system output to offset expected errors. It is most effec-
tive in systems that can be accurately modeled and predicted, requiring prior knowl-
edge of system characteristics and anticipated outputs. In the intercontinental teleop-
eration control system of this study, comprehensive experiments and analyses have

Fig. 5.17 Teleoperation performance under intercontinental WAN conditions, reprinted from Lyu 
et al. [1], Copyright (2025), with permission from IEEE 
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scrutinized the network performance parameters and control performance parame-
ters, grounded on the previously measured latency. Hence, integrating a feedforward 
control strategy into the original master–slave tracking control system appears apt 
to optimize control performance. 

As illustrated in Fig. 5.18, the most fundamental master–slave position mapping 
teleoperation system can be conceptualized as a simple feedback control system. 
Real-time feedback of the current actual position of the slave robotic arm compared 
to the input position from the master side enables closed-loop control. This traditional 
position feedback tracking control strategy involves interpolating the input position 
signal from the master side and the feedback position signal from the slave side, and 
designing a proportional controller to achieve position tracking between master and 
slave sides. To compensate for the motion delay and error introduced by network 
latency, a feedforward differential position value is employed to compensate the input 
feedforward vref when specifying the slave side position from the master side. Addi-
tionally, to mitigate the impact of network fluctuations on the overall control system 
performance, a low-pass filter is integrated into the existing master–slave closed-loop 
control loop to enhance system robustness. To simulate and validate the effectiveness 
of the feedforward controller designed and implemented in this section, the entire 
system is first modeled using Simulink in MATLAB. Gaussian distribution is used 
to simulate network fluctuations based on the magnitude of intercontinental network 
latency measured during the experimental process. Subsequently, comparative exper-
iments are conducted to evaluate teleoperation performance between the original 
mapping teleoperation system and the system with the introduced feedforward filter 
design, as depicted in Fig. 5.19. 

The curves depicted in Fig. 5.19a represent the experimental results of the orig-
inal feedback control loop in the simulated system, illustrating the master–slave 
mapping. In the simulation, the network latency is denoted as avg(RTT ) + |Xt|,

Fig. 5.18 Feedforward controller for WAN teleoperation with high latency, reprinted from Lyu 
et al. [1], Copyright (2025), with permission from IEEE
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(a) (b) 

Fig. 5.19 Simulation comparison for feedforward control framework. a Initial system simulation. 
b Simulation with feedforward controller

where avg(RTT ) represents the mean delay of the intercontinental network loop 
obtained during preliminary testing, and “t” is modeled based on the fluctuation 
distribution of network latency, using a Gaussian distribution. From the compara-
tive simulation experiments conducted using Simulink, it is evident that due to the 
influence of the control loop’s loopback delay, which includes both network latency 
and control latency, the slave-side input noticeably lags behind the master-side posi-
tion input. Additionally, an analysis of the errors between each peak value for each 
control cycle reveals an approximate error level of 2° for both master and slave sides, 
as depicted in the middle plot of Fig. 5.19a. Introducing the feedforward controller 
designed in this section yields significant improvements. Comparing the position 
signals between master and slave sides, it can be observed that, relative to the control 
effect without feedforward control shown in Fig. 5.19a, the motion delay between 
master and slave sides is reduced. Moreover, the error values are further diminished, 
as demonstrated in the middle plot of Fig. 5.19b, indicating a substantial decrease in 
peak error values. 

When further integrating the designed feedforward controller into the actual inter-
continental teleoperation control system, the test results are shown in Fig. 5.20. 
Compared to the performance of the intercontinental network teleoperation loop 
with the initial proportional controller depicted in Fig. 5.17, it is evident that the 
introduction of the feedforward controller significantly improves the system. During 
the actual intercontinental teleoperation control tests with the feedforward controller, 
the average motion delay is 1.282 s, which is comparable to the original teleoper-
ation system’s performance. Additionally, the average peak error value is −2.199°, 
representing a significant reduction in error compared to the teleoperation control 
system without the feedforward controller.
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Fig. 5.20 Real-life performance of intercontinental teleoperation with feedforward, reprinted from 
Lyu et al. [1], Copyright (2025), with permission from IEEE 

5.3.3 Verification of an Intercontinental Teleoperation 
System 

To further validate the practical application performance of the intercontinental tele-
operation control system, a bimanual coordinated insertion task was conducted using 
the lab-constructed dual-arm robot teleoperation control system. As illustrated in 
Fig. 5.21, the operator in Sweden wears motion capture equipment that records upper 
limb movement data and performs kinematic calculations. The control data output 
is managed using the incremental pose mapping teleoperation technique designed 
in Chap. 4. The operator has two visual feedback screens: the main screen provides 
feedback from the primary operation perspective of the robot, allowing the operator 
to monitor the robot’s overall movement, while the second screen shows the camera 
view of the robotic arm’s end effector, giving the operator a clear view of the robot 
and its end effector’s motion control status. The dual-arm robot is located in a labora-
tory in Hangzhou, China. A camera is positioned to provide a first-person perspective 
for the robot, and a RealSense RGB-D camera is mounted on the end effector of the 
Jaco2 robotic arm to capture and feedback the operational view of the end effector. 
In front of the robotic arm, there is an operation table for placing the objects to be 
manipulated.
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Fig. 5.21 Intercontinental teleoperation system setup and the demonstration, reprinted from Lyu 
et al. [1], Copyright (2025), with permission from IEEE 

In this subsection, the bimanual coordinated insertion task involves manipulating a 
cylindrical shaft and a cylindrical sleeve. The objective is to insert the cylindrical shaft 
into the cylindrical sleeve. This task is designed to be a loose fit, with the primary goal 
of validating the position control performance of the intercontinental teleoperation 
control system, without using end-effector force control for adjustments. As shown 
in Fig. 5.22, in the initial state, the right arm of the robot grips the cylindrical sleeve, 
while the left arm is in its initial position. The operator adjusts the left arm’s posture 
to align with the workpiece on the table in preparation for grasping. The operator 
then moves the left hand downward to control the left arm’s end-effector to the 
gripping position of the cylindrical shaft on the table. Using a gesture to enable the 
end-effector, the operator grips the cylindrical shaft and lifts it. At the 10-s mark, 
the operator coordinates the movements of both arms to fine-tune the positions of 
the left arm holding the cylindrical shaft and the right arm holding the cylindrical 
sleeve. Based on feedback from the two camera perspectives, the operator adjusts 
the posture and position of the cylindrical shaft to align it precisely with the hole 
of the cylindrical sleeve. The operator then slowly moves and continuously adjusts 
the posture of the left arm’s cylindrical shaft to insert it into the sleeve. Finally, the 
operator releases the grip of the end-effector, completing the coordinated insertion 
task, and resets the robotic arms.

Additionally, to further demonstrate the practicality of the designed teleoperation 
system, functional tests were conducted in various household operation scenarios 
within an indoor environment, as shown in Fig. 5.23. The figure illustrates the oper-
ator in Sweden remotely controlling the robotic arm in China to perform tasks such 
as grasping and placing wooden blocks into corresponding boxes, organizing and 
sorting fruits on a table, and using a wireless Bluetooth stethoscope to perform 
cardiac and pulmonary auscultation on a remote patient.

To further validate the practicality of the designed intercontinental teleoperation 
control system, a master-side feedback and safety interaction system was imple-
mented using capacitive sensing robotic skin. This system underwent functional
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Fig. 5.22 Intercontinental teleoperation for bimanual coordinated insertion task, reprinted from 
Lyu et al. [1], Copyright (2025), with permission from IEEE

(a) (b) (c) 

Fig. 5.23 Some use cases of the intercontinental teleoperation. a Teleoperated wooden block 
organization. b Teleoperated fruit handling. c Teleoperated auscultation verification
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Fig. 5.24 Intercontinental sensing feedback and safety interaction for teleoperation, reprinted from 
Lyu et al. [1], Copyright (2025), with permission from IEEE 

verification for safety interaction. As shown in Fig. 5.24, flat motor vibrators and 
LEDs were attached to the operator’s wearable device in Sweden to indicate vibration 
status. The robot in China was equipped with sensory skin to detect the proximity 
of objects or the operator. The sensory data was transmitted through the Google 
Cloud intercontinental teleoperation network to the operator’s side in Sweden. Upon 
receiving the feedback signal, the processor on the operator’s side activated the vibra-
tors and LEDs. During remote operation, the operator controls the robot arm using 
motion capture, sending velocity commands to the remote arm to perform various 
actions and tasks. This feedback control mechanism enables safe interaction between 
the robot arm and its environment, enhancing the operator’s perception of the remote 
operation site. 

5.4 Summary 

Building upon the research on pose-mapping teleoperation techniques discussed 
earlier, this chapter focuses on testing and analyzing the performance of teleop-
eration control systems under wireless local area network (LAN) and wide area 
wired network connections. For the teleoperation systems using local wireless 
network connections, statistical analysis is conducted on real-time sniffed uplink 
and downlink latencies to characterize the performance under various Wi-Fi 6 and 
5G conditions. Additionally, different control-demand scenarios are studied to further 
investigate the collaborative design methods for network and control in teleopera-
tion systems, providing data support for teleoperation design in various functional 
scenarios. While for the teleoperation systems using wide area wired network connec-
tions, tests are conducted to characterize the performance of intercontinental wide
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area network connections and real-time control. An optimization method using feed-
forward control for ultra-long-distance teleoperation control systems is proposed. 
This facilitates teleoperation across continents, such as from Sweden to China, under 
intercontinental wide area network connections. The practical performance of the 
intercontinental teleoperation control system is validated through multiple remote 
operation tasks. The main conclusions of this chapter are as follows: 

(1) A semi-physical simulation testing system has been devised to assess the perfor-
mance of local wireless network control. This system integrates real network 
deployment environments into the teleoperation testing setup. Extensive tests 
were conducted on teleoperation control under various conditions, including Wi-
Fi 6 networks at close, medium, and far distances, as well as 5G network connec-
tions. Analysis and statistical evaluations have been carried out on network 
latency in both uplink and downlink directions, as well as on the motion delay 
and joint peak error of the control system’s master–slave ends. The findings 
reveal that Wi-Fi 6 networks exhibit a higher probability distribution of latency 
exceeding 10 ms compared to 5G networks, although the average latency of Wi-
Fi 6 networks is lower. Regarding control performance, the latency of master– 
slave ends under wireless local area network connections is notably higher than 
that under wired connections, accompanied by larger joint peak errors. Further-
more, the joint peak error of master–slave ends under Wi-Fi 6 wireless network 
connections surpasses that under 5G network connections. 

(2) To tackle the issue of decreased control performance stemming from network 
communication delays in teleoperation systems, a low-pass filter has been imple-
mented at the slave end of the system. This filter aims to mitigate the impact 
of network transmission uncertainties on control performance metrics. Experi-
mental findings reveal that introducing a filter at the slave end notably reduces 
peak joint motion errors under wireless local area network conditions. However, 
it simultaneously leads to an increase in motion delay between the master and 
slave ends. Additionally, we further outline co-design approaches for teleoper-
ation systems and networks tailored to different requirements: for teleoperation 
systems requiring swift response, omitting a filter at the slave end is advisable, 
and networks like Wi-Fi 6, characterized by low-latency and high-throughput 
capabilities, are preferred; for teleoperation systems requiring high precision, 
introducing a filter at the slave end is necessary, and networks like 5G, suitable 
for precision control, should be chosen. 

(3) A dedicated network connection for ultra-long-distance teleoperation spanning 
7,800 km from Sweden to China has been meticulously established. Exten-
sive testing and comparative analysis are conducted to assess the performance 
of the intercontinental ultra-long-distance teleoperation control system and its 
network connectivity. The real-time impact of network performance on robot 
teleoperation systems across ultra-long-distance wide area network connec-
tions is thoroughly examined. Results revealed an average end-to-end delay 
of 1.230 s for the ultra-long-distance wide area network connection, with an 
average peak error of −2.777°. Additionally, with a master velocity feedforward
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control method which leveraging real-time position feedback from the slave-end 
robot the average peak error between the master and slave ends is effectively 
reduced to −2.199°, marking a significant 20.80% reduction compared to error 
levels in loops without feedforward control. Furthermore, diverse application-
level tasks and functionalities are meticulously designed and implemented for 
various teleoperation interaction scenarios. The implementation allows opera-
tors wearing motion capture devices in a lab in Sweden to seamlessly control a 
dual-arm robot situated in a lab in China. Overall, these validations underscore 
the practicality and effectiveness of the intercontinental teleoperation control 
system developed in this chapter. 
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Chapter 6 
Healthcare Applications 
of Human-Motion Based Robot 
Teleoperation 

Abstract With the rapid aging of population and the increasing number of disabled 
elderly individuals, there is a growing demand for elderly care services, creating 
a significant market for service-oriented robots. This study investigates the use of 
robot pose-mapping teleoperation technology in remote homecare and telemedicine 
applications. A homecare robot prototype, featuring a dual-arm collaborative robot 
(YuMi) and an omnidirectional mobile chassis, is designed to assist elderly individ-
uals with tasks such as retrieving medicine and delivering items within the home. The 
robot’s teleoperation system is based on operator motion capture, enabling intuitive 
control and efficient task execution. Additionally, the study explores the application 
of this technology in healthcare, particularly during the COVID-19 pandemic, by 
demonstrating its use in isolation wards to reduce healthcare workers’ exposure to 
patients. The teleoperated robot can perform essential tasks such as food delivery, 
disinfection, and remote consultations with healthcare professionals. The findings 
show that the proposed robot system not only enhances efficiency in elderly care 
but also offers a practical solution to reduce the risks associated with direct contact 
between healthcare workers and patients. The research highlights the potential of 
pose-mapping teleoperation to revolutionize homecare and telemedicine, improving 
both safety and operational efficiency. 

Keywords Teleoperation use cases · Homecare robot ·Medical assistive robot ·
Elderly care · COVID-19 

6.1 Teleoperation Use Case for Remote Homecare 

With the increasingly serious aging of China’s population, the number of disabled 
elderly is increasing, as well as the burden of social welfare. The demand for social 
security and services is becoming more and more urgent, which provides a huge 
market and application scenario for service-oriented robots [1]. It is estimated that 
by 2030, the number of people aged 60 and above will soar to 329 million, while 
the number of disabled elderly in China will increase to 67.41 million [2]. While the
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Fig. 6.1 Architecture of the telerobotic system for remote homecare, reprinted from Ref. [1], CC 
BY 4.0 

absolute number of young and middle-aged people is decreasing, the relative number 
of working people is also decreasing, making the gap in the supply of caregivers 
in the nursing market larger. Nursing work itself has the characteristics of high 
labor intensity but low wage level. Therefore, professional elderly care workers have 
been difficult to hire. Besides, the mobility of care workers is large, which is easy 
to lose, resulting in a huge market demand for homecare robots [3]. As shown in 
Fig. 6.1, the development of a new generation of network technology and remote 
operation technology provides new application scenarios and ideas for care assistance 
robots, this book proposed a remote homecare application architecture to make up for 
the shortage of elderly caregivers. Professional caregivers in hospitals, community 
clinics, and other medical institutions wore remote operation equipment to make 
corresponding auxiliary actions, controlling the elderly assistive robot located in the 
home environment through the remote network connection. The disabled elderly in 
the home environment can complete the operation of taking medicine and moving 
indoors with the support of remote teleoperation assistance, so as to improve the 
ability of self-care. 

6.1.1 System Architecture of a Homecare Robot Prototype 

In this book, an assistive robot prototype for remote homecare was integrated and 
designed. The overall structure of the prototype is schematically shown in Fig. 6.2, 
which includes a robotic arm, a mobile chassis, a lifting mechanism, and a ride 
section. A YuMi dual-arm collaborative robot is used as the actuator of the robotic 
arm. The omnidirectional mobile chassis is used to carry the rider, the upper part of
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Fig. 6.2 Prototype design of the homecare robot, reprinted from Ref. [4], CC BY 4.0 

the YuMi dual-arm robot, and to support the lifting mechanism. The mobile chassis 
selects the McNamee wheel multi-wheel drive structure to realize omnidirectional 
movement, which can meet the demand for flexible movement and steering in the 
narrow space of the home environment. There is a lifting mechanism between the 
robot arm and the mobile chassis, which can adjust the relative height of the robot 
arm and the ride section, and the adjustable stroke is 550 mm. The ride section is 
located in front of the robot arm, and there is a slide mechanism between the arm 
and the mobile chassis, which can adjust the relative distance between the arm and 
the robot arm to adapt to the different user body sizes and to adjust the operating 
space of the robot arm. The robotic arm is installed at the rear of the ride section, and 
the robotic arm makes corresponding nursing actions from behind the rider. On the 
one hand, this arrangement makes the overall structure of the nursing robot compact 
and effectively improves the power density of the service robot. On the other hand, 
the double robot arm can also make the nursing robot realize more complex nursing 
actions. 

6.1.2 Application for Remote Dementia Care in Home 
Environments 

In order to verify the practicality of the pose mapping teleoperation system in home-
care scenarios, functional verification was carried out by teleoperating the YuMi 
robotic arm to perform item grasping experiments in a laboratory environment. The
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operator wore the inertial motion capture device PN, made the corresponding upper 
limb grasping action, and controlled the YuMi robot to deftly grasp the medicine 
bottle. The teleoperation grasping verification process is shown in Fig. 6.3. The  test  
was to verify the grasping ability of common items in home application scenarios 
during the bitmap teleoperation process. The operator and the robot were in the same 
test site without remote feedback equipment. The test result showed that the pose 
mapping teleoperation technology proposed in this book can accurately transfer the 
operator’s actions and intentions from the master to the slave robot, and successfully 
complete the grasping of medicines on the desktop. 

In order to further validate the practical application capability of the robotic system 
for care assistance in remote smart homecare scenarios, this book carried out a system 
application study on the remote home assistance delivery task for a disabled elderly 
person, as shown in Fig. 6.4. The remote healthcare operator wore a wearable device 
to capture his own movement data and connected remotely to the local controller 
of the care-assisting robot in another room via the network. The care recipient is 
an elderly disabled person riding on the care-assisting robot in the other room. The 
operator and the care recipient were separated from each other by a distance of 50 
m. A webcam was set up at the operation site of the robot to transmit real-time live 
image data to the operator. The operator adjusted his own movements in real-time 
by the on-site feedback displayed on the screen, successfully helping the elderly to 
take the daily items such as water cups on the table and operating the robot arm

Fig. 6.3 Demonstration of picking up a medicine bottle remotely, reprinted from Ref. [1], CC BY 
4.0 
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Fig. 6.4 Delivering items remotely for the elderly by robot teleoperation, reprinted from Ref. [1], 
CC BY 4.0 

to deliver them to the elderly who are inconvenient to move. Through the practical 
application verification, the interface friendliness and operation convenience of the 
pose mapping teleoperation technology proposed in this book for the main operator 
user were verified, and the task execution capability of the remote homecare robot 
was also verified, which proved the application prospect of the remote homecare 
application framework supported by the posture mapping teleoperation technology 
proposed in this book. 

6.2 Teleoperation Use Case for Telemedicine in COVID-19 

During the COVID-19 epidemic, there was a risk of nosocomial infection among 
healthcare workers in the isolation wards, and many cases of nosocomial infection 
among healthcare workers due to contact with patients in China. Therefore, the major 
challenge is to reduce the contact of healthcare workers with patients in the process 
of diagnosis and treatment, so as to avoid nosocomial infections [5]. The application 
of remote operation technology can help healthcare workers carry out medical assis-
tance remotely, effectively protecting the life safety of healthcare workers. However, 
with the current mainstream teleoperation solution, it is still an urgent problem to 
improve the convenience and operability of the robotic teleoperation control process 
and reduce the learning cost of healthcare workers to facilitate their quick start [6]. In 
this section, robot pose mapping teleoperation technology was applied to the first-line 
diagnosis and treatment of the novel coronavirus, aiming to reduce the risk of infec-
tion caused by the frequent entry of medical staff into the isolation ward, reducing 
the workload and burden of medical care, improving the efficiency of diagnosis 
and treatment. The proposed telemedicine nursing framework for isolation wards is
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Fig. 6.5 Teleoperated robot in isolation ward for COVID-19 prevention and control, reprinted from 
Ref. [7], CC BY 4.0 

shown in Fig. 6.5. Healthcare personnel can remotely operate the medical assistant 
robot outside the isolation ward to assist medical personnel in completing part of 
the ward care work, or the robot can independently complete the daily care work of 
the patient, blocking the cross-infection caused by the contact between healthcare 
personnel and the patient. Through real-time monitoring, recording and controlling 
patients’ physical signs and parameters, traceable historical data are provided for 
later interventional treatment and promoting patients’ health recovery, providing a 
strong guarantee and key technical support for fighting the epidemic. 

6.2.1 A Medical Assistive Robot Prototype Used in Isolation 
Ward 

The medical assistance robot in the isolation ward built based on the dual-arm robot 
YuMi has a human-like two-handed dual-arm structure, as shown in Fig. 6.6. The  
structure is mainly divided into four parts: an omnidirectional mobile chassis, a 
two-armed collaborative robot on top of the chassis, a height-adjustment mecha-
nism, and other auxiliary devices. The chassis allows omnidirectional movement 
through different combinations of movements of the four McNamee wheels, which 
is suitable for flexible movement in the confined space of an isolation ward. The 
two-armed robot YuMi is connected to the mobile chassis by a motorized height-
adjustment mechanism, which is used to adjust the height of the robot arm and its 
workspace in unstructured operating scenarios. The design of the omnidirectional
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Fig. 6.6 Teleoperated robot prototype for medical assistance in isolation ward, reprinted from Ref. 
[7], CC BY 4.0 

mobile chassis and height-adjustment mechanism greatly extends the movement 
flexibility of medically assistive robots in isolation wards and hospitals. 

In order to meet the daily patient care needs, the end replaceable clamps of 
commonly used tools (capacitive stylus, Doppler ultrasound equipment, handheld 
sterilization equipment, etc.) are designed. Based on the smart tablet PC mounted on 
the front of the robot and equipped with a remote consultation system, the patient 
can have video interaction and non-contact consultation with the remote healthcare 
personnel. At the same time, the design of the end-replaceable fixtures allows for 
the installation of other small diagnostic equipment according to operational needs, 
assisting healthcare workers in completing tasks such as food and drug delivery, daily 
decontamination, simple instrumentation, and remote cardiopulmonary auscultation, 
which can effectively minimize the risk of healthcare workers being exposed to the 
novel coronavirus. A storage box for medicines, disinfectants, and other essentials is 
mounted on both sides of the robot. Remote data transmission is established through 
a pair of high-power Wi-Fi repeaters between the robot and the healthcare worker, 
allowing for a reliable wireless connection between the healthcare operator and the 
robot over a distance of 300 m, meeting the needs of telemedicine assistance in the 
hospital environment. 

6.2.2 Clinical Trials of Robot Teleoperation in Isolation Ward 

During the epidemic period, the medical assistance robot platform designed in this 
book was tested in the teaching and research Center of the First Affiliated Hospital
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of Zhejiang University Medical School and tested in the emergency center of the 
First Affiliated Hospital of Zhejiang University Medical School on the premise of 
obtaining the approval of clinical experiment ethics review. Figure 6.7 shows the 
working scenario of the remote operation of medical assistance robot for remote drug 
delivery. The medical staff wore an inertial motion capture device in a secure work 
area outside the isolation ward, and the dual robotic arms of the medical assistance 
robot were remotely controlled by the medical staff through the proposed GuLiM 
hybrid intuitive mapping method. The camera installed on the robot transmitted the 
scene vision to the display device at the scene where the nursing worker was located, 
so as to realize the infection intervention between the medical operator and the 
infected patient. The purpose of this application is to provide a remote solution that 
allows healthcare workers to avoid entering isolation wards when treating patients, 
thereby reducing the risk of cross-infection among healthcare workers in the hospital. 
On the one hand, in the field verification application process of isolation ward, the 
YuMi cooperative robot used can monitor external collisions through joint current 
estimation torque, which has excellent safety performance and collision detection 
and control mechanism, so it can ensure immediate stop when accidental collisions 
occur. On the other hand, the proximity sensing robot skin based on the principle of 
self-capacitance can be applied to the surface of the robot body [8]. The proximity 
of the human body is perceived before the collision, and the corresponding obstacle 
avoidance action is made in combination with the manipulator controller to improve 
the safety of the interaction between robots and people. 

In the actual clinical application process, the specific functions of the teleoperation 
medical assistance robot system proposed in this book are as follows:

(1) Teleoperated item delivery: The movement of the robotic arm is controlled by 
capturing the movement of the operator’s upper limbs. The opening and closing 
of the end clamp is controlled by capturing the movement of the operator’s 
fingers. Necessary items (such as medicines, thermometers, disinfectants, etc.)

Fig. 6.7 Remote medicine delivery using the teleoperated robot 
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(a) Medicine Delivery (b) Remote auscultation 

(c) Remote operation of the medical instruments (d) Remote daily consultation 

Fig. 6.8 Clinical applications of the robot teleoperation in FAHZU for COVID-19, reprinted from 
Ref. [7], CC BY 4.0. a Medicine delivery. b Remote auscultation. c Remote operation of the medical 
instruments. d Remote daily consultation 

are picked up from the storage boxes on both sides of the robot. etc.) to be deliv-
ered to the patient, thus achieving remote item delivery. The field application is 
shown in Fig. 6.8a;

(2) Remote operation and remote auscultation: By installing Doppler ultrasound 
auscultation equipment at the end of the robot’s robotic arm, medical staff can 
remotely control the auscultation equipment at the end of the robot to contact the 
auscultation part of the patient’s body. The auscultation signal is transmitted to 
remote medical staff in real time via Bluetooth to achieve remote auscultation. 
The field application is shown in Fig. 6.8b; 

(3) Remote operation of conventional medical instruments: By installing a capaci-
tive stylus on the panel of conventional medical instruments that can be touched 
at the end of the robotic arm, the operator remotely controls the robotic arm to 
operate the instruments outside the isolation ward. The robotic arm can operate 
the physical buttons of the instrument by pressing with one finger, and operate 
the knob of the instrument by holding and rotating with two fingers. The field 
application is shown in Fig. 6.8c; 

(4) Non-contact consultation and emotion monitoring: By deploying an audio and 
video communication system on a smart tablet integrated in front of the robot, 
non-contact consultation between patients and doctors is achieved. In addition, 
an emotion recognition system based on deep neural networks is deployed to
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realize daily emotion recognition and recording analysis of patients. The field 
application is shown in Fig. 6.8d. 
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Chapter 7 
Conclusion and Future Perspectives 

Abstract This book explores the advancements in teleoperation technology, specif-
ically focusing on human-robot pose mapping for applications in remote homecare 
and medical assistance. The related study addresses challenges such as improving 
trajectory tracking accuracy, coordinating dual arms and redundant degrees of 
freedom, and understanding the impact of network performance on teleoperation 
systems. Four key areas of research are highlighted: single-arm and dual-arm pose 
mapping, full-body coordinated teleoperation, and communication-reliable teleoper-
ation. Innovative solutions, including real-time incremental pose mapping, gesture-
based control, and network coordination frameworks, enhance the performance and 
intuitiveness of teleoperated robots. The study also evaluates the impact of network 
delays and proposes methods for long-distance teleoperation, such as ultra-long-
distance China-Sweden connections. Future research directions involve integrating 
force feedback for high-precision tasks, further exploring the effects of network 
delays on performance, and expanding the applications to industries like nuclear, 
chemical, and emergency response. 

Keywords Work summary · Dual-arm control · Remote homecare ·Wireless 
control · Human-robot interaction 

This part of the book comprises one chapter, which summarizes the main work of 
this book and presents some important future directions. 

7.1 Research Conclusions 

Teleoperation technology is a key practical technology in the field of robotics, with 
its application scenarios expanding from hazardous operational environments in the 
nuclear and chemical industries to high-dynamic, strong environmental interaction 
scenarios such as remote homecare and medical assistance tasks. Current challenges
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include poor end trajectory tracking accuracy in master-slave heterogeneous human-
robot pose mapping, difficulty in coordinating the dual arms, chassis, and torso of 
redundant degree-of-freedom robots, and unclear impact of network performance on 
teleoperation control systems. To address these issues, this book conducts research in 
four areas: “single-arm pose mapping”, “dual-arm pose mapping”, “full-body coor-
dinated teleoperation”, and “communication-reliable teleoperation”. It captures the 
body movements of the master operator through inertial motion capture devices and 
establishes pose mapping teleoperation strategies for the robot’s dual arms, chassis, 
and humanoid torso based on the master operator’s body posture data. Additionally, 
it designs a control network coordination framework for the pose mapping teleop-
eration system to enhance the system’s convenience and intuitiveness, enabling care 
assistant robots to become the remote “second body” of medical personnel. This 
has practical application needs and significant promotion value. The main work and 
conclusions of this book are as follows: 

(1) Based on wearable inertial motion capture devices to collect the operator’s limb 
movement data, a distributed communication architecture between the dual-
arm robot control interface and the inertial motion capture device was imple-
mented using ROS, completing the direct point-to-point pose mapping between 
the human and the robots. To address the issues of non-uniform speed and 
jerky, unsmooth tracking paths in the robot’s end movement process, a human-
robot motion mapping method based on local path resampling constraints 
was proposed, achieving continuous end effector trajectory tracking mapping 
between the operator and the robot. Experiments were designed to evaluate 
the end effector trajectory tracking performance, calculating the DTW distance 
between the corresponding spatial curves to quantitatively assess the similarity 
between the trajectories. The best tracking performance was achieved when 
Fre = 7.5 Hz, for both simple and complex trajectories, with end trajecto-
ries tracking errors reduced to PRMS = 1.05 mm and PRMS = 5.10 mm for 
simple spatial linear motion trajectories and complex spatial character motion 
trajectories, respectively. 

(2) An incremental pose mapping strategy was proposed, which calculates the rela-
tive pose transformation between the robot and the operator in real-time for the 
kinematic resolution of the target pose of the teleoperated robot. This approach 
eliminates the cumbersome initial calibration process typically required in 
traditional pose mapping teleoperation. Additionally, a GuLiM dual-arm pose 
mapping teleoperation method based on the coupling of hand gestures and 
limb movements was proposed. This method addresses the issue of limited 
operator movement range in master-slave heterogeneous human-robot pose 
mapping operations, enhancing the convenience and intuitiveness of teleoper-
ation. Comparative studies were conducted to evaluate the performance differ-
ences between the GuLiM pose mapping method and the traditional DMM direct 
mapping method in task completion. The GuLiM mapping method showed a 
46.77% improvement in placement accuracy over the DMM direct mapping 
method. In the pose placement accuracy assessment experiments, the average
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score of the GuLiM hybrid mapping method was 69.27% higher than that of 
the DMM direct mapping method. 

(3) To achieve teleoperation control of the redundant degree-of-freedom body 
motion mechanisms of an assistive care robot, intuitive teleoperation control 
research based on operator limb motion capture was conducted for the robot’s 
chassis movement control and humanoid torso pose mapping control. A wear-
able wrist camera was designed, and a hand gesture trajectory recognition 
method based on background velocity feature matching was proposed, achieving 
classification and recognition of various gesture trajectories. With 1000 gesture 
samples, the average recognition accuracy under LOSO cross-validation was 
97.34%. Corresponding gesture mapping strategies were designed for the 
robot’s movement control. Furthermore, a torso pose mapping strategy based on 
the recognition of operator torso and lower limb movement features was devel-
oped, enabling pose mapping control of the humanoid robot’s multi-degree-
of-freedom torso. Finally, application research was conducted on the proposed 
pose mapping teleoperation technology in two scenarios: remote homecare and 
remote medical assistance. 

(4) A semi-physical simulation test system was designed and implemented to 
evaluate the performance of local wireless control. Performance tests were 
conducted for Wi-Fi 6 and 5G network connections at different AP distances. 
The test results showed that the probability distribution of Wi-Fi 6 network 
delays above 10 ms was higher than that of the 5G network, but the average 
delay of the Wi-Fi 6 network was lower than that of the 5G network. In terms of 
control performance, the latency between the master and slave ends was signifi-
cantly higher under wireless local area network connections compared to wired 
connections, with larger peak joint errors. The peak joint error between the 
master and slave ends was greater under Wi-Fi 6 wireless network connections 
than under 5G network connections. For wide-area wired network teleopera-
tion, a dedicated ultra-long-distance teleoperation network was designed and 
built between Sweden and China, spanning 7800 km, with an average end-
to-end delay of 1.230 s and an average peak error of −2.777°. Furthermore, 
a master-end speed feedforward control method based on slave-end position 
feedback was proposed, reducing the average peak error between the master 
and slave ends to −2.199°, a reduction of 20.80%. This achieved practical vali-
dation and application of the intercontinental ultra-long-distance teleoperation 
control system. 

7.2 Technical Discussion 

(1) A teleoperation method for mapping the upper limb movements of a human to 
a robotic arm was proposed, improving the trajectory tracking accuracy of the 
slave robotic arm and enhancing the intuitiveness and convenience of the master 
operator’s control process.
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A local path resampling pose mapping strategy was introduced, which resamples 
the hand trajectory of the operator periodically to plan the desired path for the robot 
in real-time, constraining the trajectory tracking output of the slave robot’s end-
effector, thus improving the smoothness and similarity of master-slave end-effector 
trajectory tracking during low-frequency pose data mapping output. An incremental 
pose mapping method was proposed, achieving equivalent pose mapping in Carte-
sian space by calculating the relative pose between the human and the robot’s end-
effector in real-time. This simplifies the initialization calibration process of pose 
mapping and addresses the limitation of the operator’s action range in master-
slave heterogeneous human-robot pose mapping. Furthermore, dual-arm human-
robot pose mapping teleoperation was achieved by coupling the operator’s hand 
gestures with limb movements. 

(2) A pose mapping strategy for non-robotic-arm-type body movement mecha-
nisms of humanoid robots was established, achieving intuitive pose mapping 
teleoperation control of the robot’s mobile chassis and multi-degree-of-freedom 
torso. 

A wearable wrist camera capable of extracting the operator’s hand movement back-
ground features was designed, and a dynamic hand gesture trajectory recognition 
method for the operator was proposed. This method enables the control of the wheeled 
chassis of the care-assistive robot through various hand gesture commands. Addi-
tionally, a pose mapping teleoperation control method for the redundant degree-of-
freedom torso of a humanoid robot was designed based on the operator’s torso and 
lower limb movements. This method overcomes the traditional pose mapping teleop-
eration output control range, achieving full-body coordinated pose mapping teleoper-
ation for non-robotic-arm-type body movement mechanisms of care-assistive robots. 
Application functionality verification was conducted using a self-built care-assistive 
robot platform for two scenarios: remote homecare and remote medical assistance. 

(3) A performance evaluation framework for pose mapping teleoperation systems 
was established, revealing the impact of wireless local area networks and wide-
area wired networks on control performance, and achieving intercontinental 
ultra-long-distance pose mapping teleoperation. 

A semi-physical simulation test system for evaluating the performance of pose 
mapping teleoperation systems was designed, and real network environments were 
introduced for deployment to perform real-time performance testing of teleoperation 
systems under various wireless local area network connections, including Wi-Fi 6 
and 5G. This revealed the impact of wireless local area networks on teleoperation 
control performance. An intercontinental wide-area network connection framework 
for human-robot pose mapping teleoperation was established, testing the loopback 
delay and real-time pose mapping control performance of intercontinental wide-area 
network connections. A feedforward control method for large delays in ultra-long-
distance wide-area network connections was proposed, reducing the mapping error 
between the master and slave ends, and achieving China-Sweden intercontinental 
wide-area network ultra-long-distance human-robot pose mapping teleoperation.
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7.3 Look into the Future 

This book focuses on the intuitive operation and convenient interaction requirements 
during teleoperation, investigating the human-robot pose mapping mechanism and 
unilateral teleoperation intelligent interaction control methods. Preliminary research 
was also conducted on the relationship and collaborative design between the perfor-
mance of the pose mapping teleoperation system and network connection conditions. 
Based on the problems encountered during the research and writing process, the 
following prospects and discussions for future research are proposed: 

(1) In practical applications, unilateral teleoperation control lacks feedback on 
contact forces from the slave side. For production tasks that require high preci-
sion in end-effector force/control, relying solely on visual feedback may not 
meet the feedback needs of the master operator and the force control accu-
racy requirements of the slave side. Based on the pose mapping mechanism 
and control network collaborative design strategy studied in this book, future 
research could further enhance the functionality of the master input devices and 
explore the pose mapping dual-arm teleoperation control with force feedback. 

(2) Due to the extreme complexity of the intercontinental communication link 
connections and relay nodes, this study only examined the relationship between 
control loop round-trip delay and control performance, without breaking down 
the impact of different segments of delay on control performance during inter-
continental ultra-long-distance teleoperation. Future work could involve setting 
up dedicated intercontinental network links and, using the analysis methods 
proposed in this book, further study the impact of various types of delays on tele-
operation control performance in intercontinental ultra-long-distance network 
links. 

(3) The specific application research conducted in this book mainly targets weak 
interaction task scenarios such as homecare and medical assistance. Future 
research could extend the applications to other industrial fields requiring profes-
sional skill operations and remote work demands, such as nuclear industry, 
chemical industry hazardous waste disposal, emergency public safety incident 
remote handling, and remote exploration missions.
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